Skip to main content

Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1280 Accesses

Abstract

Cucurbituril-type (CB-type) molecules have played key roles in host-guest chemistry as well as supramolecular chemistry. Along with the development and synthetic expansion of CB-type molecules during the past two decades, their applications in a variety of research areas have been investigated. In particular, CB-type molecules have been found to modulate the chemical and biological properties of biomedically relevant molecules via host-guest complexations, including pKa shift, solubility/stability enhancement, therapeutic efficacy modulation, and toxicity reduction. This chapter summarizes these investigations and their implications in biomedical sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:2495–2496

    CAS  Google Scholar 

  2. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CAS  Google Scholar 

  3. Liu Z, Nalluri SKM, Stoddart JF (2017) Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem Soc Rev 46:2459–2478

    CAS  PubMed  Google Scholar 

  4. Liu S, Zavalij PY, Isaacs L (2005) Cucurbit[10]uril. J Am Chem Soc 127:16798–16799

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng X-J, Liang L-L, Chen K, Ji N-N, Xiao X, Zhang J-X, Zhang Y-Q, Xue S-F, Zhu Q-J, Ni X-L, Tao Z (2013) Twisted cucurbit[14]uril. Angew Chem Int Ed 52:7252–7255

    CAS  Google Scholar 

  6. Li Q, Qiu S-C, Zhang J, Chen K, Huang Y, Xiao X, Zhang Y, Li F, Zhang Y-Q, Xue S-F, Zhu Q-J, Tao Z, Lindoy LF, Wei G (2016) Twisted Cucurbit[n]urils. Org Lett 18:4020–4023

    CAS  PubMed  Google Scholar 

  7. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406

    CAS  PubMed  Google Scholar 

  8. Kim S, Yun G, Khan S, Kim J, Murray J, Lee YM, Kim WJ, Lee G, Kim S, Shetty D, Kang JH, Kim JY, Park KM, Kim K (2017) Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Mater Horiz 4:450–455

    CAS  Google Scholar 

  9. Kuok KI, Li S, Wyman IW, Wang R (2017) Cucurbit[7]uril: an emerging candidate for pharmaceutical excipients. Ann N Y Acad Sci 1398:108–119

    CAS  PubMed  Google Scholar 

  10. Yang X, Liu F, Zhao Z, Liang F, Zhang H, Liu S (2018) Cucurbit[10]uril-based chemistry. Chin Chem Lett 29:1560–1566

    CAS  Google Scholar 

  11. Ma D, Hettiarachchi G, Nguyen D, Zhang B, Wittenberg JB, Zavalij PY, Briken V, Isaacs L (2012) Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat Chem 4:503

    CAS  PubMed  Google Scholar 

  12. Hennig A, Bakirci H, Nau WM (2007) Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat Methods 4:629

    CAS  PubMed  Google Scholar 

  13. Biedermann F, Hathazi D, Nau WM (2015) Associative chemosensing by fluorescent macrocycle–dye complexes – a versatile enzyme assay platform beyond indicator displacement. Chem Commun 51:4977–4980

    CAS  Google Scholar 

  14. Yin H, Dumur F, Niu Y, Ayhan MM, Grauby O, Liu W, Wang C, Siri D, Rosas R, Tonetto A, Gigmes D, Wang R, Bardelang D, Ouari O (2017) Chameleonic dye adapts to various environments shining on macrocycles or peptide and polysaccharide aggregates. ACS Appl Mater Interfaces 9:33220–33228

    CAS  PubMed  Google Scholar 

  15. Goehry C, Besora M, Maseras F (2015) Computational study on the mechanism of the acceleration of 1,3-dipolar cycloaddition inside cucurbit[6]uril. ACS Catal 5:2445–2451

    CAS  Google Scholar 

  16. Palma A, Artelsmair M, Wu G, Lu X, Barrow SJ, Uddin N, Rosta E, Masson E, Scherman OA (2017) Cucurbit[7]uril as a supramolecular artificial enzyme for Diels–Alder reactions. Angew Chem Int Ed 56:15688–15692

    CAS  Google Scholar 

  17. Scorsin L, Roehrs JA, Campedelli RR, Caramori GF, Ortolan AO, Parreira RLT, Fiedler HD, Acuña A, García-Río L, Nome F (2018) Cucurbituril-mediated catalytic hydrolysis: a kinetic and computational study with neutral and cationic Dioxolanes in CB7. ACS Catal 8:12067–12079

    CAS  Google Scholar 

  18. Gao C, Huang Q, Lan Q, Feng Y, Tang F, Hoi MPM, Zhang J, Lee SMY, Wang R (2018) A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat Commun 9:2967

    PubMed  PubMed Central  Google Scholar 

  19. Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) Supramolecular cross-linked networks via host−guest complexation with cucurbit[8]uril. J Am Chem Soc 132:14251–14260

    CAS  PubMed  Google Scholar 

  20. Tan CSY, Liu J, Groombridge AS, Barrow SJ, Dreiss CA, Scherman OA (2017) Controlling spatiotemporal mechanics of supramolecular hydrogel networks with highly branched cucurbit[8]uril Polyrotaxanes. Adv Funct Mater 28:1702994

    Google Scholar 

  21. Yin H, Wang R (2017) Applications of cucurbit[n]urils (n=7 or 8) in pharmaceutical sciences and complexation of biomolecules. Isr J Chem 58:188–198

    Google Scholar 

  22. Sun C, Zhang H, Li S, Zhang X, Cheng Q, Ding Y, Wang L-H, Wang R (2018) Polymeric nanomedicine with “Lego” surface allowing modular functionalization and drug encapsulation. ACS Appl Mater Interfaces 10:25090–25098

    CAS  PubMed  Google Scholar 

  23. Wu D, Li Y, Yang J, Shen J, Zhou J, Hu Q, Yu G, Tang G, Chen X (2017) Supramolecular nanomedicine constructed from cucurbit[8]uril-based amphiphilic brush copolymer for Cancer therapy. ACS Appl Mater Interfaces 9:44392–44401

    CAS  PubMed  Google Scholar 

  24. Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaacs L, Briken V (2010) Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS One 5:e10514

    PubMed  PubMed Central  Google Scholar 

  25. Jin Jeon Y, Kim S-Y, Ho Ko Y, Sakamoto S, Yamaguchi K, Kim K (2005) Novel molecular drug carrier: encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug. Org Biomol Chem 3:2122–2125

    Google Scholar 

  26. Uzunova VD, Cullinane C, Brix K, Nau WM, Day AI (2010) Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org Biomol Chem 8:2037–2042

    CAS  PubMed  Google Scholar 

  27. Oun R, Floriano RS, Isaacs L, Rowan EG, Wheate NJ (2014) The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles. Toxicol Res 3:447–455

    CAS  Google Scholar 

  28. Chen H, Chan JYW, Yang X, Wyman IW, Bardelang D, Macartney DH, Lee SMY, Wang R (2015) Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Adv 5:30067–30074

    Google Scholar 

  29. Zhang X, Xu X, Li S, Wang L-H, Zhang J, Wang R (2018) A systematic evaluation of the biocompatibility of cucurbit[7]uril in mice. Sci Rep 8:8819

    PubMed  PubMed Central  Google Scholar 

  30. Zhao W-X, Wang C-Z, Chen L-X, Cong H, Xiao X, Zhang Y-Q, Xue S-F, Huang Y, Tao Z, Zhu Q-J (2015) A Hemimethyl-substituted cucurbit[7]uril derived from 3α-methyl-glycoluril. Org Lett 17:5072–5075

    CAS  PubMed  Google Scholar 

  31. Yang X, Zhao W, Wang Z, Huang Y, Lee SMY, Tao Z, Wang R (2017) Toxicity of hemimethyl-substituted cucurbit[7]uril. Food Chem Toxicol 108:510–518

    CAS  PubMed  Google Scholar 

  32. Macartney DH (2018) Cucurbit[n]uril host-guest complexes of acids, Photoacids, and super Photoacids. Isr J Chem 58:230–243

    CAS  Google Scholar 

  33. Ni S, Meetani MA, Al-Kaabi L, Ghosh I, Nau WM (2011) Effect of cucurbit[n]urils on tropicamide and potential application in ocular drug delivery. Supramol Chem 23:650–656

    Google Scholar 

  34. El-Sheshtawy HS, Chatterjee S, Assaf KI, Shinde MN, Nau WM, Mohanty J (2018) A supramolecular approach for enhanced antibacterial activity and extended shelf-life of fluoroquinolone drugs with cucurbit[7]uril. Sci Rep 8:13925

    PubMed  PubMed Central  Google Scholar 

  35. Koner AL, Ghosh I, Ni S, Nau WM (2011) Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can J Chem 89:139–147

    CAS  Google Scholar 

  36. Ni S, Ajeb SM, Sham A, AbuQamar SF (2014) Enhancement of in vitro fungicidal activity of fuberidazole to Botrytis cinerea by cucurbiturils. J Incl Phenom Macrocycl Chem 79:301–309

    Google Scholar 

  37. Barooah N, Mohanty J, Pal H, Bhasikuttan AC (2012) Stimulus-responsive supramolecular pKa tuning of cucurbit[7]uril encapsulated Coumarin 6 dye. J Phys Chem B 116:3683–3689

    CAS  PubMed  Google Scholar 

  38. Barooah N, Sundararajan M, Mohanty J, Bhasikuttan AC (2014) Synergistic effect of intramolecular charge transfer toward supramolecular pKa shift in cucurbit[7]uril encapsulated Coumarin dyes. J Phys Chem B 118:7136–7146

    CAS  PubMed  Google Scholar 

  39. Gavvala K, Koninti RK, Sengupta A, Hazra P (2014) Cucurbit[7]uril assisted ultraviolet to visible fluorescence switch of a heart medicine. Phys Chem Chem Phys 16:2823–2826

    CAS  PubMed  Google Scholar 

  40. Basílio N, Laia CAT, Pina F (2015) Excited-state proton transfer in confined medium. 4-Methyl-7-hydroxyflavylium and β-Naphthol incorporated in cucurbit[7]uril. J Phys Chem B 119:2749–2757

    PubMed  Google Scholar 

  41. Mallick S, Pal K, Chandra F, Koner AL (2016) Investigation of the effect of cucurbit[7]uril complexation on the photophysical and acid-base properties of the antimalarial drug quinine. Phys Chem Chem Phys 18:30520–30529

    CAS  PubMed  Google Scholar 

  42. Boraste Deepak R, Chakraborty G, Ray Alok K, Shankarling Ganapati S, Pal H (2017) pH-responsive interaction of Fluorogenic antimalarial drug quinine with macrocyclic host cucurbit[7]uril: modulations in Photophysical and Acid-Base properties. Chem Sel 2:5128–5142

    Google Scholar 

  43. Wang R, Macartney DH (2008) Cucurbit[7]uril host–guest complexes of the histamine H2-receptor antagonist ranitidine. Org Biomol Chem 6:1955–1960

    CAS  PubMed  Google Scholar 

  44. Li S, Yin H, Martinz G, Wyman IW, Bardelang D, Macartney DH, Wang R (2016) Supramolecular encapsulation of benzocaine and its metabolite Para-aminobenzoic acid by cucurbit[7]uril. New J Chem 40:3484–3490

    CAS  Google Scholar 

  45. Li S, Wyman IW, Wang C, Wang Y, Macartney DH, Wang R (2016) Inhibition of C(2)-H activity on alkylated imidazolium Monocations and Dications upon inclusion by cucurbit[7]uril. J Org Chem 81:9494–9498

    CAS  PubMed  Google Scholar 

  46. Yin H, Chen L, Yang B, Bardelang D, Wang C, Lee SMY, Wang R (2017) Fluorescence enhancement and pKa shift of a rho kinase inhibitor by a synthetic receptor. Org Biomol Chem 15:4336–4343

    CAS  PubMed  Google Scholar 

  47. Yin H, Wang R, Wan J, Zheng Y, Ouyang D, Wang R (2016) Molecular encapsulation of histamine H2-receptor antagonists by cucurbit[7]Uril: an experimental and computational study. Molecules 21:1178

    PubMed Central  Google Scholar 

  48. Shaikh M, Mohanty J, Singh PK, Nau WM, Pal H (2008) Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pKa shifts. Photochem Photobiol Sci 7:408–414

    CAS  PubMed  Google Scholar 

  49. Khurana R, Barooah N, Bhasikuttan AC, Mohanty J (2017) Modulation in the acidity constant of acridine dye with cucurbiturils: stimuli-responsive pKa tuning and dye relocation into live cells. Org Biomol Chem 15:8448–8457

    CAS  PubMed  Google Scholar 

  50. Huang Y, Hu Q-H, Song G-X, Tao Z, Xue S-F, Zhu Q-J, Q-d Z, Wei G (2014) Cucurbit[7,8]urils binding to gefitinib and the effect of complex formation on the solubility and dissolution rate of the drug. RSC Adv 4:3348–3354

    CAS  Google Scholar 

  51. Huang Y, Song G, Tang Q, Wang J, Tao Z, Xue S, Zhang J (2014) Encapsulation of Cytarabine in cucurbit [7] uril and its effects on stability of the drug. Chem J Chinese U 35:1224–1228

    CAS  Google Scholar 

  52. Zhao Y, Buck DP, Morris DL, Pourgholami MH, Day AI, Collins JG (2008) Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril. Org Biomol Chem 6:4509–4515

    CAS  PubMed  Google Scholar 

  53. Ma W-J, Chen J-M, Jiang L, Yao J, Lu T-B (2013) The delivery of triamterene by cucurbit[7]uril: synthesis, structures and pharmacokinetics study. Mol Pharm 10:4698–4705

    CAS  PubMed  Google Scholar 

  54. Huang Y, Xue S-F, Tao Z, Zhu Q-J, Zhang H, Lin J-X, Yu D-H (2008) Solubility enhancement of kinetin through host–guest interactions with cucurbiturils. J Incl Phenom Macrocycl Chem 61:171–177

    CAS  Google Scholar 

  55. Dong N, Dong M, Zhao A, Zhu Q, Tao Z, Zhao Y (2010) Preparation and characterization of inclusion complexes of antitumor camptothecin with cucurbit[n = 7, 8]urils. Sci China Chem 53:2304

    CAS  Google Scholar 

  56. Liu Q, Tang Q, Xi Y-Y, Huang Y, Xiao X, Tao Z, Xue S-F, Zhu Q-J, Zhang J-X, Wei G (2015) Host–guest interactions of thiabendazole with normal and modified cucurbituril: 1H NMR, phase solubility and antifungal activity studies. Supramol Chem 27:386–392

    CAS  Google Scholar 

  57. Xu Z, Lian X, Li M, Zhang X, Wang Y, Tao Z, Zhang Q (2017) Effects of inclusion of chrysin in cucurbit[8]uril on its stability, solubility and antioxidant potential. Chem Res Chin Univ 33:736–741

    CAS  Google Scholar 

  58. Li M, Lian X, Xu Z, Xing X, Zhang J, Li R, Tao Z, Zhang Q (2017) Influence of interaction with cucurbit [7] uril on solubility, stability and antioxidant activity of 2'-Hydroxychalcone. Chem J Chinese U 38:442–447

    CAS  Google Scholar 

  59. Li S, Chan JY-W, Li Y, Bardelang D, Zheng J, Yew WW, Chan DP-C, Lee SMY, Wang R (2016) Complexation of clofazimine by macrocyclic cucurbit[7]uril reduced its cardiotoxicity without affecting the antimycobacterial efficacy. Org Biomol Chem 14:7563–7569

    CAS  PubMed  Google Scholar 

  60. Yang X, Huang Q, Bardelang D, Wang C, Lee SMY, Wang R (2017) Supramolecular alleviation of cardiotoxicity of a small-molecule kinase inhibitor. Org Biomol Chem 15:8046–8053

    CAS  PubMed  Google Scholar 

  61. Kuok KI, In Ng PC, Ji X, Wang C, Yew WW, Chan DPC, Zheng J, Lee SMY, Wang R (2018) Supramolecular strategy for reducing the cardiotoxicity of bedaquiline without compromising its antimycobacterial efficacy. Food Chem Toxicol 119:425–429

    CAS  PubMed  Google Scholar 

  62. Ni S, Koner AL, Nau WM (2008) Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for Cucurbiturils. Angew Chem Int Ed 47:5398–5401

    Google Scholar 

  63. Appel EA, Rowland MJ, Loh XJ, Heywood RM, Watts C, Scherman OA (2012) Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril. Chem Commun 48:9843–9845

    CAS  Google Scholar 

  64. Webber MJ, Appel EA, Vinciguerra B, Cortinas AB, Thapa LS, Jhunjhunwala S, Isaacs L, Langer R, Anderson DG (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci USA 113:14189

    CAS  PubMed  Google Scholar 

  65. Li S, Miao X, Wyman IW, Li Y, Zheng Y, Wang Y, Macartney DH, Wang R (2015) High-affinity host–guest complex of cucurbit[7]uril with a bis(thiazolium) salt. RSC Adv 5:56110–56115

    CAS  Google Scholar 

  66. Li S, Yin H, Wyman IW, Zhang Q, Macartney DH, Wang R (2016) Encapsulation of vitamin B1 and its phosphate derivatives by cucurbit[7]uril: tunability of the binding site and affinity by the presence of phosphate groups. J Org Chem 81:1300–1303

    CAS  PubMed  Google Scholar 

  67. Li S, Ding Y-F, Yin H, Wang C, Bardelang D, Wang L-H, Wang R (2016) Encapsulation of AGE-breaker Alagebrium by cucurbit[7]uril improved the stability of both its carbonyl α-hydrogen and Thiazolium C2-hydrogen. Chem Asian J 11:3126–3133

    CAS  PubMed  Google Scholar 

  68. Miao X, Li Y, Wyman I, Lee SMY, Macartney DH, Zheng Y, Wang R (2015) Enhanced in vitro and in vivo uptake of a hydrophobic model drug coumarin-6 in the presence of cucurbit[7]uril. Med Chem Commun 6:1370–1374

    CAS  Google Scholar 

  69. Plumb JA, Venugopal B, Oun R, Gomez-Roman N, Kawazoe Y, Venkataramanan NS, Wheate NJ (2012) Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics 4:561–567

    CAS  PubMed  Google Scholar 

  70. Gomez-Roman N, McGregor F, Wheate NJ, Plumb JA (2015) Cucurbit [7] uril encapsulated cisplatin overcomes resistance to cisplatin induced by Rab25 overexpression in an intraperitoneal ovarian cancer model. J Ovarian Res 8:62

    PubMed  PubMed Central  Google Scholar 

  71. Hettiarachchi G, Samanta SK, Falcinelli S, Zhang B, Moncelet D, Isaacs L, Briken V (2016) Acyclic cucurbit[n]uril-type molecular container enables systemic delivery of effective doses of Albendazole for treatment of SK-OV-3 xenograft tumors. Mol Pharm 13:809–818

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen Y, Huang Z, Xu J-F, Sun Z, Zhang X (2016) Cytotoxicity regulated by host–guest interactions: a supramolecular strategy to realize controlled disguise and exposure. ACS Appl Mater Interfaces 8:22780–22784

    CAS  PubMed  Google Scholar 

  73. Chen Y, Huang Z, Zhao H, Xu J-F, Sun Z, Zhang X (2017) Supramolecular chemotherapy: cooperative enhancement of antitumor activity by combining controlled release of Oxaliplatin and consuming of Spermine by cucurbit[7]uril. ACS Appl Mater Interfaces 9:8602–8608

    CAS  PubMed  Google Scholar 

  74. Chen H, Chen Y, Wu H, Xu J-F, Sun Z, Zhang X (2018) Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials 178:697–705

    CAS  PubMed  Google Scholar 

  75. Yin H, Rosas R, Gigmes D, Ouari O, Wang R, Kermagoret A, Bardelang D (2018) Metal actuated ring translocation switches in water. Org Lett 20:3187–3191

    CAS  PubMed  Google Scholar 

  76. Cheng Q, Yin H, Rosas R, Gigmes D, Ouari O, Wang R, Kermagoret A, Bardelang D (2018) A pH-driven ring translocation switch against cancer cells. Chem Commun 54:13825–13828

    CAS  Google Scholar 

  77. Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S (2015) A supramolecular antibiotic switch for antibacterial regulation. Angew Chem Int Ed 54:13208–13213

    CAS  Google Scholar 

  78. Chen L, Bai H, Xu J-F, Wang S, Zhang X (2017) Supramolecular porphyrin photosensitizers: controllable disguise and Photoinduced activation of antibacterial behavior. ACS Appl Mater Interfaces 9:13950–13957

    CAS  PubMed  Google Scholar 

  79. Yang Y, He P, Wang Y, Bai H, Wang S, Xu J-F, Zhang X (2017) Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew Chem Int Ed 56:16239–16242

    CAS  Google Scholar 

  80. Li S, Jiang N, Zhao W, Ding Y-F, Zheng Y, Wang L-H, Zheng J, Wang R (2017) An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chem Commun 53:5870–5873

    CAS  Google Scholar 

  81. Chen H, Chan JYW, Li S, Liu JJ, Wyman IW, Lee SMY, Macartney DH, Wang R (2015) In vivo reversal of general anesthesia by cucurbit[7]uril with zebrafish models. RSC Adv 5:63745–63752

    CAS  Google Scholar 

  82. Li S, Chen H, Yang X, Bardelang D, Wyman IW, Wan J, Lee SMY, Wang R (2015) Supramolecular inhibition of neurodegeneration by a synthetic receptor. ACS Med Chem Lett 6:1174–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang Q, Kuok KI, Zhang X, Yue L, Lee SMY, Zhang J, Wang R (2018) Inhibition of drug-induced seizure development in both zebrafish and mouse models by a synthetic nanoreceptor. Nanoscale 10:10333–10336

    CAS  PubMed  Google Scholar 

  84. Huang Q, Li S, Yin H, Wang C, Lee SMY, Wang R (2018) Alleviating the hepatotoxicity of trazodone via supramolecular encapsulation. Food Chem Toxicol 112:421–426

    CAS  PubMed  Google Scholar 

  85. Yang X, Li S, Wang Z, Lee SMY, Wang L-H, Wang R (2017) Constraining the teratogenicity of pesticide pollution by a synthetic nanoreceptor. Chem Asian J 13:41–45

    PubMed  Google Scholar 

  86. Ma D, Zhang B, Hoffmann U, Sundrup MG, Eikermann M, Isaacs L (2012) Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Angew Chem Int Ed 51:11358–11362

    CAS  Google Scholar 

  87. Hoffmann U, Grosse-Sundrup M, Eikermann-Haerter K, Zaremba S, Ayata C, Zhang B, Ma D, Isaacs L, Eikermann M (2013) CalabadionA new agent to reverse the effects of Benzylisoquinoline and steroidal neuromuscular-blocking agents. Anesthesiology 119:317–325

    CAS  PubMed  Google Scholar 

  88. Yang X, Wang Z, Niu Y, Chen X, Lee SMY, Wang R (2016) Influence of supramolecular encapsulation of camptothecin by cucurbit[7]uril: reduced toxicity and preserved anti-cancer activity. Med Chem Commun 7:1392–1397

    CAS  Google Scholar 

  89. Li S, Yang X, Niu Y, Andrew GL, Bardelang D, Chen X, Wang R (2017) Alleviation of hepatotoxicity of Arecoline (Areca alkaloid) by a synthetic receptor. Chem Sel 2:2219–2223

    CAS  Google Scholar 

  90. Li W, Yin H, Bardelang D, Xiao J, Zheng Y, Wang R (2017) Supramolecular formulation of nitidine chloride can alleviate its hepatotoxicity and improve its anticancer activity. Food Chem Toxicol 109:923–929

    CAS  PubMed  Google Scholar 

  91. Konda SK, Maliki R, McGrath S, Parker BS, Robinson T, Spurling A, Cheong A, Lock P, Pigram PJ, Phillips DR, Wallace L, Day AI, Collins JG, Cutts SM (2017) Encapsulation of mitoxantrone within cucurbit[8]uril decreases toxicity and enhances survival in a mouse model of Cancer. ACS Med Chem Lett 8:538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yin H, Huang Q, Zhao W, Bardelang D, Siri D, Chen X, Lee SMY, Wang R (2018) Supramolecular encapsulation and bioactivity modulation of a Halonium ion by cucurbit[n]uril (n = 7, 8). J Org Chem 83:4882–4887

    CAS  PubMed  Google Scholar 

  93. Huang Q, Li S, Ding Y-F, Yin H, Wang L-H, Wang R (2018) Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity. Biomater Sci 6:1031–1039

    CAS  PubMed  Google Scholar 

  94. Huang Q, Cheng Q, Zhang X, Yin H, Wang L-H, Wang R (2018) Alleviation of polycation-induced blood coagulation by the formation of polypseudorotaxanes with macrocyclic cucurbit[7]uril. ACS Appl Bio Mater 1:544–548

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (21871301), Macau Science and Technology Development Fund (FDCT 030/2017/A1 and FDCT 0121/2018/A3) and the Research Committee at the University of Macau (MYRG2016-00008-ICMS-QRCM, MYRG2016-00165-ICMS-QRCM and MYRG2017-00010-ICMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruibing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yin, H., Wang, Z., Wang, R. (2020). Modulation of Chemical and Biological Properties of Biomedically Relevant Guest Molecules by Cucurbituril-Type Hosts. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_28

Download citation

Publish with us

Policies and ethics