Skip to main content

Photoresponsive Supramolecular Polymers Based on Host-Guest Interactions

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1330 Accesses

Abstract

The photoresponsive functional groups are introduced into supramolecular polymer systems via noncovalent interaction to obtain photoresponsive supramolecular polymers, which can combine the unique properties of supramolecular polymers with the advantages of photochemical reactions. This chapter summarizes the recent progress on photoresponsive supramolecular polymers based on different hosts, including cyclodextrin (CD), cucurbituril (CB), crown ether, calixarene, and pillararene, which dominate diverse systems with various functions like self-healing, donor–acceptor interactions, aggregation-induced emission, light-regulated assembly and dissociation, and so forth. Furthermore, prospects are made to pave a way for the development of photoresponsive supramolecular polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335:813–817

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Dong S, Zheng B, Wang F, Huang F (2014) Supramolecular polymers constructed from macrocycle-based host–guest molecular recognition motifs. Acc Chem Res 47(7):1982–1994

    PubMed  CAS  Google Scholar 

  3. Kato T, Mizoshita N, Kishimoto K (2006) Functional liquid-crystalline assemblies: selforganized soft materials. Angew Chem Int Ed 45(1):38–68

    CAS  Google Scholar 

  4. Schalley CA (2002) Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom Rev 20(5):253–309

    Google Scholar 

  5. Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X (2015) The construction of a two-dimensional supramolecular organic framework with parallelogram pores and stepwise fluorescence enhancement. Chem Commun 51(91):16417–16420

    CAS  Google Scholar 

  6. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc Chem Res 47(7):2128–2140

    PubMed  CAS  Google Scholar 

  7. Yan X, Wang F, Zheng B, Huang F (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41(18):6042–6065

    PubMed  CAS  Google Scholar 

  8. Wang D, Wagner M, Butt HJ, Wu S (2015) Supramolecular hydrogels constructed by red-light-responsive host–guest interactions for photo-controlled protein release in deep tissue. Soft Matter 11:7656–7662

    PubMed  CAS  Google Scholar 

  9. Chen H, Ma X, Tian H (2014) A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew Chem Int Ed 53(51):14149–14152

    CAS  Google Scholar 

  10. Chen H, Xu L, Ma X, Tian H (2016) Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness. Polym Chem 7:3989–3992

    CAS  Google Scholar 

  11. Zheng DW, Lei Q, Chen S, Qiu WX, Liu MY, Chen X, Ding YX, Li PH, Zhang QY, Xu ZS, Zhang XZ, Chu PK (2015) Supermolecular theranostic capsules for pH-sensitive magnetic resonance imaging and multi-responsive drug delivery. J Mater Chem B 3:8499–8507

    Google Scholar 

  12. Xu XY, Huang ZY, Huang ZQ, Zhang XF, He SY, Sun XQ, Shen YF, Yan M, Zhao CS (2017) Injectable, NIR/pH-responsive nanocomposite hydrogel as long acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9:20361–20375

    PubMed  CAS  Google Scholar 

  13. Huang HY, Liu MY, Jiang RM, Chen JY, Mao LC, Wen YQ, Tian JW, Zhou NG, Zhang XY, Wei Y (2018) Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J Colloid Intereface Sci 513(1):198–204

    CAS  Google Scholar 

  14. Yang Q, Li G, Xia HS, Liu ZT, Liu ZW, Jiang JQ (2018) Controlling CO2-responsive behaviors of polymersomes self-assembled by coumarin-containing star polymer via regulating its crosslinking pattern. Macromol Rapid Commun 39:1800009

    Google Scholar 

  15. Liu L, Rui L, Gao Y, Zhang W (2014) A supramolecular approach for fabrication of photo-responsive block-controllable supramolecular polymers. Polym Chem 5:5453–5460

    CAS  Google Scholar 

  16. Zou H, Yuan WZ, Lua YQ, Wang SF (2017) UV light- and thermo-responsive supramolecular aggregates with tunable morphologies from the inclusion complexation of dendritic/linear polymers. Chem Commun 53:2463–2466

    CAS  Google Scholar 

  17. Assaf KI, Nau WM (2015) Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev 44(2):394–418

    PubMed  CAS  Google Scholar 

  18. Ni XL, Chen S, Yang Y, Tao Z (2016) Facile cucurbit[8]uril-based supramolecular approach to fabricate tunable luminescent materials in aqueous solution. J Am Chem Soc 138(19):6177–6183

    PubMed  CAS  Google Scholar 

  19. Jesús B, Peter NH, Didier L, Gareth OL, Chris T, Scherman OA (2013) Photocontrol over cucurbit[8]uril complexes: stoichiometry and supramolecular polymers. J Am Chem Soc 135:11760–11763

    Google Scholar 

  20. Cao TT, Yao XY, Ma X (2015) A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness. Chin Chem Lett 26:867–871

    CAS  Google Scholar 

  21. Groombridge AS, Palma A, Parker RM (2017) Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem Sci 8:1350–1355

    PubMed  CAS  Google Scholar 

  22. Jin TT, Zhou XH, Yin YF, Zhan TG, Cui JC, Liu LJ, Kong LC, Zhang KD (2018) Tunable water-soluble supramolecular polymers by visible-light regulated host-guest interactions. Chem Asian J 13:2818–2823

    PubMed  CAS  Google Scholar 

  23. Yang LL, Bai YH, Tan XX, Wang ZQ, Zhang X (2015) Controllable supramolecular polymerization through host-guest interaction and photochemistry. ACS Macro Lett 4:611–615

    CAS  Google Scholar 

  24. Kang YT, Cai ZG, Huang ZH, Tang XY, Xu JF, Zhang X (2016) Controllable supramolecular polymerization promoted by host enhanced photodimerization. ACS Macro Lett 5:1397–1401

    CAS  Google Scholar 

  25. Han Y, Meng Z, Ma YX, Chen CF (2014) Iptycene-derived crown ether hosts for molecular recognition and self-assembly. Acc Chem Res 47(7):2026–2040

    PubMed  CAS  Google Scholar 

  26. Zheng B, Wang F, Dong S, Huang F (2012) Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 41(5):1621–1636

    PubMed  CAS  Google Scholar 

  27. Mandal AK, Gangopadhyay M, Das A (2015) Photo-responsive pseudorotaxanes and assemblies. Chem Soc Rev 44:663–676

    PubMed  CAS  Google Scholar 

  28. Lu CJ, Zhang MM, Stang PJ (2018) Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host-guest interactions. J Am Chem Soc 140:7674–7680

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Lee M, Gibson HW (2016) Rotaxane-type hyperbranched polymers from a crown ether host and paraquat guests containing blocking groups. J Polym Sci A Polym Chem 54:1647–1658

    CAS  Google Scholar 

  30. Xu C, Chen Y, Zhang HY, Liu Y (2016) Photo-induced secondary assembly of bis(terpyridyl)dibenzo-24-crown-8/Zn2+ supramolecular polymer. J Photochem Photobiol A 331:240–246

    CAS  Google Scholar 

  31. Shinkai S, Mori S, Tsubaki T, Sone T, Manabe O (1984) New water-soluble host molecules derived from calix[6]arene. Tetrahedron Lett 25(46):5315–5318

    CAS  Google Scholar 

  32. Guo DS, Liu Y (2014) Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res 47(7):1925–1934

    PubMed  CAS  Google Scholar 

  33. Yao XY, Ma X, Tian H (2014) Aggregation-induced emission encoding supramolecular polymers based on controllable sulfonatocalixarene recognition in aqueous solution. J Mater Chem C 2:5155–5160

    CAS  Google Scholar 

  34. Sun RY, Xue CM, Ma X, Gao M, Tian H, Li Q (2013) Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4]arene) and pseudorotaxane. J Am Chem Soc 135:5990–5993

    PubMed  CAS  Google Scholar 

  35. Fraix A, Torrisi V, Marletta G, Sortino S, Mineo PG, Tomaselli GA, Ballistreri FP, Sfrazzetto GT, Pappalardo A (2016) Supramolecular polymer networks based on calix[5]arene chained poly(p-phenyleneethynylene) and C60 fulleropyrrolidine. Supramol Chem 28(5):485–492

    CAS  Google Scholar 

  36. Hirao T, Tosaka M, Yamago S, Haino T (2014) Supramolecular fullerene polymers and networks directed by molecular recognition between calix[5]arene and C60. Chem Eur J 20:16138–16146

    PubMed  CAS  Google Scholar 

  37. Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y (2008) para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 130(15):5022–5023

    PubMed  CAS  Google Scholar 

  38. Li C (2014) Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem Commun 50(83):12420–12433

    CAS  Google Scholar 

  39. Xu JF, Chen YZ, Yang QZ (2013) Dynamic covalent bond based on reversible photo [4+4] cycloaddition of anthracene for construction of double-dynamic polymers. Org Lett 15:6148–6151

    PubMed  CAS  Google Scholar 

  40. Shao L, Sun JF, Hua B, Huang FH (2018) An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection. Chem Commun 54:4866–4869

    CAS  Google Scholar 

  41. Shi BB, Jie KC, Zhou YJ, Xia DY, Yao Y (2015) Formation of fluorescent supramolecular polymeric assemblies via orthogonal pillar[5]arene-based molecular recognition and metal ion coordination. Chem Commun 51:4503–4506

    CAS  Google Scholar 

  42. Yang J, Li Z, Zhou Y, Yu G (2014) Construction of a pillar[5]arene-based linear supramolecular polymer and a photo-responsive supramolecular network. Polym Chem 5:6645–6650

    CAS  Google Scholar 

  43. Dhinakaran MK, Gong WT, Yin Y, Wajahat A, Kuang XJ, Wang LY, Guiling N (2017) Configuration-independent AIE-active supramolecular polymers of cyanostilbene through the photo-stable host-guest interaction of pillar[5]arene. Polym Chem 8:5295–5302

    CAS  Google Scholar 

  44. Wang Y, Sun CL, Niu LY, Wu LZ, Tung CH, Chen YZ, Yang QZ (2017) Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5]arenes. Polym Chem 8:3596–3602

    CAS  Google Scholar 

  45. Yang XY, Cai WQ, Dong S, Zhang K, Zhang J, Huang FH, Huang F, Cao Y (2017) Fluorescent supramolecular polymers based on pillar[5]arene for OLED device fabrication. ACS Macro Lett 6:647–651

    CAS  Google Scholar 

  46. Chen PP, Mondal JH, Zhou YJ, Zhu HT, Shi BB (2016) Construction of a neutral linear supramolecular polymer via orthogonal donor–acceptor interactions and pillar[5]arene-based molecular recognition. Polym Chem 7:5221–5225

    CAS  Google Scholar 

  47. Meng LB, Li DQ, Xiong SH, Hu XY, Wang LY, Li GG (2015) FRET-capable supramolecular polymers based on a BODIPY-bridged pillar[5]arene dimer with BODIPY guests for mimicking the light-harvesting system of natural photosynthesis. Chem Commun 51:4643–4646

    CAS  Google Scholar 

  48. Zhang CW, Jiang ST, Yin GQ, Li XP, Zhao XL, Yang HB (2018) Dual stimuli-responsive cross-linked AIE supramolecular polymer constructed through hierarchical self-assembly. Isr J Chem 58:1229–1236

    CAS  Google Scholar 

  49. Huang Z, Yang L, Zhang X (2014) Supramolecular polymerization promoted and controlled through self-sorting. Angew Chem Int Ed 53:5351–5355

    CAS  Google Scholar 

  50. Elio M, Sijbren O (2015) Supramolecular systems chemistry. Nat Nanotechnol 10:111–119

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (21722603, 21871083, and 21476075), Project supported by Shanghai Municipal Science and Technology Major Project (Grant No.2018SHZDZX03), the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02-E00010), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gu, F., Ma, X. (2020). Photoresponsive Supramolecular Polymers Based on Host-Guest Interactions. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_18

Download citation

Publish with us

Policies and ethics