Skip to main content

CFD Modeling of Data Centers

  • Chapter
  • First Online:
50 Years of CFD in Engineering Sciences

Abstract

This paper deals with the prediction of airflow and temperature distributions in data centers with the goal of achieving proper cooling of the computer equipment. The focus is on raised-floor data centers, but the material is equally applicable to other designs. First, the concept of a raised-floor data center is introduced and the cooling challenge is described. In this arrangement, cooling air is supplied through perforated tiles. The flow rates of the cooling air must meet the cooling requirements of the computer racks placed next to the tiles. These airflow rates are governed primarily by the pressure distribution under the raised floor. Thus, the key to modifying the flow rates is to influence the flow field in the under-floor plenum. Computational Fluid Dynamics (CFD) studies are presented to provide insight into various factors affecting the airflow distribution and the corresponding cooling and to explore various methods for controlling the airflow distribution. Then attention is turned to the above-floor space, where the focus is on preventing the hot air from entering the inlets of computer servers. Different strategies for achieving this prevention are considered. CFD modeling is ideal for understanding the behavior of these strategies and for determining their effectiveness. Some recent studies in these areas are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASHRAE (2008). Thermal guidelines for data processing environments, ASHRAE, Atlanta.

    Google Scholar 

  2. Patankar, S. V. (2010). Airflow and cooling in a data center. Journal of Heat Transfer, 132, 073001-1–073001-17.

    Article  Google Scholar 

  3. Joshi, Y. & Kumar, P. (2012). Energy efficient thermal management of data centers, Springer.

    Google Scholar 

  4. Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., et al. (2015). A brief overview of recent developments in thermal management of data centers. ASME Journal of Electronic Packaging, 137, 040801-1–040801-19.

    Google Scholar 

  5. Kang, S., Schmidt, R. R., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). A methodology for the design of perforated tiles in raised floor data centers using computational flow analysis. IEEE Transactions on Components and Packaging Technologies, 24, 177–183.

    Article  Google Scholar 

  6. Schmidt, R. R., Karki, K. C., Kelkar, K. M., Radmehr, A., & Patankar, S. V. (2001). Measurements and predictions of the flow distribution through perforated tiles in raised-floor data centers. In Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Paper No. IPACK2001-15728.

    Google Scholar 

  7. Karki, K. C., Radmehr, A., & Patankar, S. V. (2003). Use of computational fluid dynamics for calculating flow rates through perforated tiles in raised-floor data centers. International Journal of Heating, Ventilation, Air-Conditioning, and Refrigeration Research, 9, 153–166.

    Google Scholar 

  8. Patankar, S. V., & Karki, K. C. (2004). Distribution of cooling airflow in a raised-floor data center. ASHRAE Transactions, 110, 629–635.

    Google Scholar 

  9. Karki, K. C., Patankar, S. V., & Radmehr, A. (2003). Techniques for controlling airflow distribution in raised-floor data centers. Paper No. IPACK 2003-35282, Proceedings of IPACK’2003, The Pacific Rim/ASME International Electronics Packaging Technical Conference and Exhibition.

    Google Scholar 

  10. Van Gilder, J., & Schmidt, R. R. (2005). Airflow uniformity through perforated tiles in a raised-floor data center, IPACK2005–73375. ASME InterPack’05.

    Google Scholar 

  11. Bhopte, S., Sammakia, B., Iyengar, M., & Schmidt, R. (2011). Numerical and experimental study of the effect of underfloor blockages on data center performance. Journal of Electronic Packaging, 133, 011007–1–011007-7.

    Article  Google Scholar 

  12. Abdelmaksoud, W. A., Khalifa, H. E., Dang, T. Q., Elhadidi, B., Schmidt, R. R., & Iyengar, M. (2010). Experimental and computational study of perforated floor tile in data centers. In Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).

    Google Scholar 

  13. Arghode, V. K., Kumar, P., Joshi, Y., Weiss, T., & Meyer, G. (2013). Rack level modeling of air flow through perforated tile in a data center. ASME Journal of Electronic Packaging, 135, 030901-1–030902-7.

    Article  Google Scholar 

  14. Arghode, V. K., & Joshi, Y. (2016). Modified body force model for air flow through perforated floor tiles in data centers. ASME Journal of Electronic Packaging, 138, 031002-1–031002-11.

    Article  Google Scholar 

  15. Samadiani, E., Rambo, J., & Joshi, Y. (2010). Numerical modeling of perforated tile flow distribution in raised-floor data center. ASME Journal of Electronic Packaging, 132, 021002-1–021002-8.

    Google Scholar 

  16. Alkharabsheh, A., Sammakia, B., Shrivastava, S., & Schmidt, R. (2013). Utilizing practical fan curves in CFD modeling of a data center. In 29th IEEE Semi-Therm Symposium.

    Google Scholar 

  17. Alkharabsheh, A., Sammakia, B., & Shrivastava, S. (2015). Experimentally validated computational fluid dynamics model for a data center with cold aisle containment. ASME Journal of Electronic Packaging, 137, 021010-1–021010-9.

    Google Scholar 

  18. Radmehr, A., Schmidt, R. R, Karki, K. C. & Patankar, S. V. (2005). Distributed leakage flow in raised-floor data centers. IPACK2005–73273, ASME InterPack’05.

    Google Scholar 

  19. Karki, K. C., Radmehr, A., & Patankar, S. V. (2007). Prediction of distributed air leakage in raised-floor data centers. ASHRAE Transactions, 113, 219–226.

    Google Scholar 

  20. Schmidt, R. R. (2001). Effect of data center characteristics on data processing equipment inlet temperatures. Paper No. IPACK2001–15870, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition.

    Google Scholar 

  21. Schmidt, R. R. & Cruz, E. (2002). Raised floor computer data center: effect on rack inlet temperatures of chilled air exiting both the hot and cold aisles. In IEEE 2002 Inter Society Conference on Thermal Phenomena (pp. 580–594).

    Google Scholar 

  22. Schmidt, R. R., & Cruz, E. (2004). Cluster of high-powered racks within a raised-floor computer data center: Effect of perforated tile flow distribution on rack inlet temperatures. ASME Journal of Electronic Packaging, 126, 510–518.

    Article  Google Scholar 

  23. Schmidt, R., & Cruz, E. (2002). Raised floor data center: Effect on rack inlet temperatures when high powered racks are situated amongst lowered powered racks. ASME Paper No. IMECE2002-39652.

    Google Scholar 

  24. Schmidt, R., & Cruz, E. (2003). Raised floor data center: Effect on rack inlet temperatures when rack flow rates are reduced. Paper No. IPACK2003-35241.

    Google Scholar 

  25. Guggari, S., Agonafer, D., Belady, C., & Stahl, L. (2003). A hybrid methodology for the optimization of data center room layout. Paper No. IPACK2003-35273, Proceedings of IPACK’03, The Pacific Rim/ASME International Electronics Packaging technical Conference and Exhibition.

    Google Scholar 

  26. Bhopte, S., Aganofer, D., Schmidt, R., & Sammakia, B. (2006). Optimization of data center room layout to minimize rack inlet temperatures. ASME Journal of Electronic Packaging, 128, 380–387.

    Article  Google Scholar 

  27. Radmehr, A., Karki K. C., & Patankar, S. V. (2007). Analysis of airflow distribution across a front-to-rear server rack. Paper No. InterPack2007-33574, Proceedings of IPACK2007.

    Google Scholar 

  28. Patel, C.D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system air inlet specifications. Paper No. IPACK2001-15622, Proceedings of InterPack’01, The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition.

    Google Scholar 

  29. Patel, C. D., Sharma, R., Bash, C. E. & Beitelmal, A. (2002). Thermal considerations in cooling large scale high compute data centers. In ITHERM 2002, The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

    Google Scholar 

  30. Sorell, V., Escalante, S., & Yang, J. (2005). Comparison of overhead and underfloor air delivery systems in a data center environment using CFD modeling. ASHRAE Transaction, 111, 756–764.

    Google Scholar 

  31. Shrivastava, S., Sammakia, B., Schmidt R., & Iyengar, M. (2005). Comparative analysis of different data center airflow management configurations. Paper No. IPACK2005-73234.

    Google Scholar 

  32. Sullivan, R. F. (2002). Alternating cold and hot aisles provides more reliable cooling for server farms, a White Paper from the Uptime Institute, Inc., Santa Fe, NM, USA.

    Google Scholar 

  33. Idelchik, I. E. (1994). Handbook of hydraulic resistance. Florida: CRC Press.

    Google Scholar 

  34. Tate Access Floors Inc. (2008). PERF1250 Air Flow Panel-24.

    Google Scholar 

  35. Innovative Research, Inc. (2004). Effect of backpressure on the flow rate delivered by a CRAC unit, Technical Note.

    Google Scholar 

  36. Tatchell-Evans, M., Kapur, N., Summers, J., Thompson, H., & Oldham, D. (2017). An experimental and theoretical investigation of the extent of bypass air within data centers employing aisle containment, and its impact on power consumption. Applied Energy, 186, 457–469.

    Article  Google Scholar 

  37. Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). A hybrid lumped capacitance-CFD model for the simulation of data center transients. HVAC&R Research, 20, 688–702.

    Article  Google Scholar 

  38. Alkharabsheh, S., Sammakia, B., Shrivastava, S., & Schmidt, R. (2014). Dynamic models for server rack and CRAH in a room level CFD model of a data center. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM) (pp. 1338–1345).

    Google Scholar 

  39. Patel, C. D., Bash, C. E., Belady, C., Stahl, L., & Sullivan, D. (2001). Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications. In Pacific Rim Technical Conference and Exposition of Packaging and Integration of Photonic Systems, Paper No. IPACK2001-15622.

    Google Scholar 

  40. Shrivastava, S. K., Iyengar, M., Sammakia, B. G., Schmidt, R., & vanGilder, J. W. (2006). Experimental-numerical comparison for a high-density data center: hot spot fluxes in excess of 500 W/ft2. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 402–411).

    Google Scholar 

  41. Tan, S. P., Toh, K. C., & Wong, Y. W. (2007). Server-rack air flow and heat transfer interactions in a data center. Paper No. IPACK2007-33672.

    Google Scholar 

  42. Bash, C. E., Patel, C. D. & Sharma, R. K. (2006). Dynamic thermal management of air cooled data centers. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 445–452).

    Google Scholar 

  43. Almoli, A. (2013). Air flow management inside data centres, Ph.D. Thesis, University of Leeds.

    Google Scholar 

  44. Zhang, X., VanGilder, J. W., Iyengar, M., & Schmidt, R. R. (2008). Effect of rack modeling detail on the numerical results of a data center test cell. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 1183–1190).

    Google Scholar 

  45. Zhai, J. Z., Hermansen, K. A., & Al-Saadi, S. (2012). The development of simplified rack boundary conditions for numerical data center models. ASHRAE Transactions, 118, 436–449.

    Google Scholar 

  46. Coxe, K. C. (2009). Rack infrastructure effects on the thermal performance of a server, Dell White Paper.

    Google Scholar 

  47. North, T. (2011). Understanding how cabinet door perforation impacts airflow. BICSI News Magazine, September/October 2011 (pp. 36–42).

    Google Scholar 

  48. Rubenstein, B. (2008). Cable management arm airflow impedance study. In IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM) (pp. 577–582).

    Google Scholar 

  49. Kennedy, D. (2012). Ramifications of server airflow leakage in data centers with aisle containment. White Paper, Tate Access Floors, Inc.

    Google Scholar 

  50. Bajura, R. A., & Jones, E. H. (1976). Flow distribution in manifolds. Transactions on ASME Journal of Fluids Engineering, 98, 654–666.

    Article  Google Scholar 

  51. Majumdar, A. K. (1980). Mathematical modelling of flows in dividing and combining flow manifolds. Applied Mathematical Modelling, 4, 424–432.

    Article  Google Scholar 

  52. Radmehr, A., Fitzpatrick, J., & Karki, K. (2018). Optimizing cooling performance of a data center using CFD simulations and measurements. ASHRAE Journal, 60, 22–30.

    Google Scholar 

  53. Radmehr, A., Noll, B., Fitzpatrick, J., & Karki, K. (2013). CFD modeling of an existing raised-floor data center. In 29th IEEE Semi-Term Symposium.

    Google Scholar 

  54. Athavale, J., Joshi, Y., & Yoda, M. (2018). Experimentally validated computational fluid dynamics model for data center with active tiles. ASME Journal of Electronic Packaging, 140, 010902–1–010902-10.

    Article  Google Scholar 

  55. Patankar, S., Karki, K., & Radmehr, R. (2012). Cold-aisle and hot-aisle containment, 7 × 24 Magazine. Fall, 52–58

    Google Scholar 

  56. Niemann, J., Brown, K., & Avelar, V. Hot-Aisle vs. Cold-Aisle Containment for Data Centers, White Paper 135, APC by Schneider Electric

    Google Scholar 

  57. Arghode, V., Sundaralingam, V., Joshi, Y., & Phelps, W. (2013). Thermal characteristics of open and contained data center cold aisle. ASME Journal of Heat Transfer, 135, 061901–1–061901-11.

    Article  Google Scholar 

  58. Arghode, V., & Joshi, Y. (2014). Room level modeling of air flow in a contained data center aisle. ASME Journal of Electronic Packaging, 36, 011011–1–011011-10.

    Google Scholar 

  59. Schmidt, R., Iyengar, M., & Caricari, J. (2010). Data center housing high performance supercomputer cluster: above floor thermal measurements compared to CFD analysis. ASME Journal of Electronic Packaging, 132, 021009–1–021009-8.

    Article  Google Scholar 

  60. Beitelmal, A., & Bash, C. D. (2004). Thermo-fluids provisioning of a high performance high density data center. Technical Report No. HPL-2004-146. Hewlett Packard Laboratories, Palo Alto, CA.

    Google Scholar 

  61. Gondapalli, S., Ibrahim, M., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling of data centers with transient boundary conditions. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 262–268).

    Google Scholar 

  62. Ibrahim, M., Gondapalli, S., Bhopte S., Sammakia, B., Murray, B., & Ghose, K. (2010). Numerical modeling approach to dynamic data center cooling. In 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1262–1268).

    Google Scholar 

  63. Erden, H. S., Khalifa, H. E., & Schmidt, R. R. (2014). Determination of the lumped-capacitance parameters of air-cooled servers through air temperature measurements. ASME Journal of Electronic Packaging, 136, 031005–1–031005-9.

    Google Scholar 

  64. VanGilder, J, Pardey, Z., Healey, C., & Zhang, X. (2013). A compact server model for transient data center simulations. ASHRAE Transactions, Paper No. DE-13-032.

    Google Scholar 

  65. VanGilder, J. W., Healey, C. M., Condor, M., Tian, W., & Menusier, Q. (2017). A compact cooling-system model for transient data center simulations. In 17th IEEE ITHERM Conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash Karki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karki, K., Patankar, S., Radmehr, A. (2020). CFD Modeling of Data Centers. In: Runchal, A. (eds) 50 Years of CFD in Engineering Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2670-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2670-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2669-5

  • Online ISBN: 978-981-15-2670-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics