Skip to main content

Heat and Mass Transfer in Fuel Cells and Stacks

  • Chapter
  • First Online:
50 Years of CFD in Engineering Sciences

Abstract

A review is presented of the evolution of heat and mass transfer in modern fuel cells, and the role of computational fluid dynamics in the prediction of their performance. Both polymer electrolyte and solid oxide fuel cells are considered. The mathematical details of the mass transfer driving force and the transferred substance state, as well as the distributed resistance analogy, are derived. It is shown how the transferred substance state may be used to prescribe generalised convection–diffusion boundary conditions (inlet/outlet/wall). The combination of the mass transfer driving force and the application of the distributed resistance analogy concept to fuel cell stack models are explained in detail. In addition to the governing equations for thermofluids, the mathematical modelling of fuel cells requires additional thermodynamic, electrochemical kinetic and electric considerations to be taken into account (physicochemical hydrodynamics). Moreover, the results of original research conducted over two decades and culminating in very recent results are presented and explained. This work is research-in-motion and some future possibilities are outlined in the conclusion.

Submitted to: 50 Years of CFD in Engineering Sciences. A Commemorative Volume in Honour of D. Brian Spalding. Springer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is perhaps a pity that the first symbol to be introduced should be so elaborate as \(\dot{m}^{{\prime \prime }}\); at any rate, an immediate explanation of the symbol is called for. The dot and the dashes have the significances given to them by Jakob (1949), who introduced them into heat transfer work: the superscribed dot signifies “per unit time”; one dash signifies “per unit length”; two dashes signify “per unit area”; and three dashes signify “per unit volume”. In accordance with this convention, we elsewhere employ the symbol \(\dot{m}^{{\prime }}\) for mass flow rate per unit width of a fluid film, and the symbol \(\dot{m}_{j}^{{{\prime \prime \prime }}}\) for the mass rate of generation of chemical substance j per unit volume due to a chemical transformation; similarly \(\dot{q}^{{\prime \prime }}\) will be used for the rate of heat transfer per unit area.

    D. B. Spalding

  2. 2.

    Sometimes a geometric factor G pre-multiplies C, S = GC(Vyp), depending on the patch type (volume, area, etc.). For convenience, it is excluded here.

  3. 3.

    In the interests of readability indices for the volume fractions, r = rk, and state-variables of each ‘space’ have been excluded.

Abbreviations

A :

Cell area, m2

b :

Blowing parameter

B :

Spalding number

C :

Source term coefficient, [units of solved variable]

c :

Specific heat, J/(kg K)

D h :

Hydraulic diameter, m

E :

Nernst potential, V

E act :

Activation energy, J/mol

F:

Faraday’s constant, 96,485 C/mol

F :

Distributed resistance, kg/(m2 s)

f :

Friction factor

g :

Mass transfer coefficient, kg/(m2 s)

g* :

Zero-flux mass transfer coefficient, kg/(m2 s)

H :

Height, m

H fg :

Heat of evaporation, J/mol

h :

Heat transfer coefficient, W/(m2 K)

\(i^{{\prime \prime }}\) :

Current density, A/m2

\(i_{0}^{{\prime \prime }}\) :

Exchange current density, A/m2

\(j^{{\prime \prime }}\) :

Diffusion flux, kg/(m2 s)

k R :

Reaction rate, m/s

L :

Length, m

M :

Molecular weight, kg/mol

\(\dot{m}^{{\prime \prime }}\) :

Mass flux, kg/(m2 s)

P:

Péclet number

p :

Pressure, N/m2

Q:

Reaction quotient, [arbitrary]

R:

Universal gas constant, 8.31446 J/(mol K)

R :

Resistance, Ohm m2

Re:

Reynolds number

r :

Volume fraction

\(\dot{S}\) :

Source term, [units of solved variable] × kg/s

\(\dot{S}^{{\prime \prime }}\) :

Source term, [units of solved variable] × kg/(m2 s)

s :

Saturation

Sh:

Sherwood number

T :

Temperature, K

t :

Time, s

\({\user2{U}}\) :

Superficial velocity, m/s

\({\user2{u}}\) :

Interstitial velocity, m/s

u :

Velocity, m/s

V :

Cell voltage, V, source term value, kg/s

x :

Displacement, m, mole fraction

y :

Mass fraction

z :

Charge number

α:

Charge transfer coefficient, volumetric heat transfer coefficient W/(m3 K)

Γ:

Exchange coefficient, kg/(m s)

γ:

Reaction order

δ:

Cell half-width, m

η:

Overpotential, V

κ:

Permeability, m2

μ:

Dynamic viscosity, kg/(m s)

ν:

Kinematic viscosity, m2/s

ρ:

Density, kg/m3

τ:

Tortuosity

Φ:

Polarisation

b :

Bulk

e :

Electrode

eff:

Effective

g :

Gas

H2:

Hydrogen

H2O:

Water

int:

Interface

l :

Liquid

O2:

Oxygen

NB:

Neighbour value

t :

Transformed substance state

P :

Nodal value

w :

Wall

0:

Ambient, external

References

  1. Spalding, D. B. (1957). I. Predicting the laminar flame speed in gases with temperature-explicit reaction rates. Combustion and Flame, 1, 287–295. https://doi.org/10.1016/0010-2180(57)90015-9.

    Article  Google Scholar 

  2. Spalding, D. B. (1957). II. One-dimensional laminar flame theory for temperature-explicit reaction rates. Combustion and Flame, 1, 296–307. https://doi.org/10.1016/0010-2180(57)90016-0.

    Article  Google Scholar 

  3. Spalding, D. B. (1960). A standard formulation of the steady convective mass transfer problem. International Journal of Heat and Mass Transfer, 1, 192–207.

    Article  Google Scholar 

  4. Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1806.

    Article  Google Scholar 

  5. Launder, B. E., & Spalding, D. B. (1979). Lectures in mathematical models of turbulence. New York: Academic Press.

    MATH  Google Scholar 

  6. Patankar, S. V., & Spalding, D. B. (1974). A calculation procedure for the transient and steady-state behavior of shell-and-tube heat exchangers. In N. Afgan & E. U. Schlünder (Eds.), Heat exchangers: Design and theory sourcebook (pp. 155–176). Washington, D.C.: Scripta Book Company.

    Google Scholar 

  7. Spalding, D. B. (2005). A simplified CFD method for the design of heat exchangers. In ASME Summer Heat Transfer Conference, San Fransisco (Vol. HT2005-72760). New York: ASME International.

    Google Scholar 

  8. Spalding, D. B. (1980). Numerical computation of multi-phase flow and heat transfer. In C. Taylor (Ed.), Recent advances in numerical methods in fluids (pp. 139–167). Swansea: Pineridge Press.

    Google Scholar 

  9. Beale, S. B., Ginolin, A., Jerome, R., Perry, M., & Ghosh, D. (2000). Towards a virtual reality prototype for fuel cells. Phoenics Journal of Computational Fluid Dynamics and Its Applications, 13, 287–295.

    Google Scholar 

  10. Beale, S. B., & Dong, W. (2002). Advanced modelling of fuel cells: Phase II heat and mass transfer with electrochemistry. Technical Report No. PET-1515-02S, National Research Council of Canada, Ottawa.

    Google Scholar 

  11. Beale, S. B., Lin, Y., Zhubrin, S. V., & Dong, W. (2003). Computer methods for performance prediction in fuel cells. Journal of Power Sources, 118, 79–85. https://doi.org/10.1016/S0378-7753(03)00065-X.

    Article  Google Scholar 

  12. Ackmann, T., de Haart, L. G. J., Lehnert, W., & Stolten, D. (2003). Modeling of mass and heat transport in planar substrate type sofcs. Journal of the Electrochemical Society, 150, A783–A789. https://doi.org/10.1149/1.1574029.

    Article  Google Scholar 

  13. Lin, Y., & Beale, S. B. (2006). Performance predictions in solid oxide fuel cells. Applied Mathematical Modelling, 30, 1485–1496. https://doi.org/10.1016/j.apm.2006.03.009.

    Article  Google Scholar 

  14. Andersson, M., Yuan, J. L., & Sunden, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer, 55, 773–788. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.032.

    Article  MATH  Google Scholar 

  15. Le, A. D., Beale, S. B., & Pharoah, J. G. (2015). Validation of a solid oxide fuel cell model on the international energy agency benchmark case with hydrogen fuel. Fuel Cells, 15, 27–41. https://doi.org/10.1002/fuce.201300269.

    Article  Google Scholar 

  16. Beale, S. B., Choi, H. W., Pharoah, J. G., Roth, H. K., Jasak, H., & Jeon, D. H. (2016). Open-source computational model of a solid oxide fuel cell. Computer Physics Communications, 200, 15–26. https://doi.org/10.1016/j.cpc.2015.10.007.

    Article  Google Scholar 

  17. Lin, Y., & Beale, S. B. (2005). Numerical predictions of transport phenomena in a proton exchange membrane fuel cell. Journal of Fuel Cell Science and Technology, 2, 213–218. https://doi.org/10.1115/1.2039949.

    Article  Google Scholar 

  18. Scholta, J., Escher, G., Zhang, W., Kuppers, L., Jorissen, L., & Lehnert, W. (2006). Investigation on the influence of channel geometries on PEMFC performance. Journal of Power Sources, 155, 66–71. https://doi.org/10.1016/j.jpowsour.2005.05.099.

    Article  Google Scholar 

  19. Schwarz, D. H., & Beale, S. B. (2009). Calculations of transport phenomena and reaction distribution in a polymer electrolyte membrane fuel cell. International Journal of Heat and Mass Transfer, 52, 4074–4081. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.043.

    Article  MATH  Google Scholar 

  20. Achenbach, E. (1994). Three-dimensional modelling and time-dependent simulation of a planar solid oxide fuel cell stack. Journal of Power Sources, 73, 333–348. https://doi.org/10.1016/0378-7753(93)01833-4.

    Article  Google Scholar 

  21. Ding, J., Patel, P., Farooque, M., & Maru, H. C. (1997). A computer model for direct carbonate fuel cells. In Proceedings 4th International Symposium on Carbonate Fuel Cell Technology (Vol. 97-4, pp. 17–138).

    Google Scholar 

  22. He, W., & Chen, Q. (1998). Three-dimensional simulation of a molten carbonate fuel cell stack under transient conditions. Journal of Power Sources, 73, 182–192. https://doi.org/10.1016/S0378-7753(97)02800-0.

    Article  Google Scholar 

  23. Spalding, D. B. (1963). Convective mass transfer; an introduction. London: Edward Arnold.

    MATH  Google Scholar 

  24. Mills, A. F., & Coimbra, C. F. (2016). Mass transfer (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  25. Kays, W. M., Crawford, M. E., & Weigand, B. (2005). Convective heat and mass transfer (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  26. Beale, S. B., Schwarz, D. H., Malin, M. R., & Spalding, D. B. (2009). Two-phase flow and mass transfer within the diffusion layer of a polymer electrolyte membrane fuel cell. Computational Thermal Sciences, 1, 105–120. https://doi.org/10.1615/ComputThermalScien.v1.i2.10.

    Article  Google Scholar 

  27. Beale, S. B., Pharoah, J. G., & Kumar, A. (2013). Numerical study of laminar flow and mass transfer for in-line spacer-filled passages. Journal of Heat Transfer, 135, 011004. https://doi.org/10.1115/1.4007651.

    Article  Google Scholar 

  28. Sherwood, T. K., Brian, P. L. T., Fisher, R. E., & Dresner, L. (1965). Salt concentration at phase boundaries in desalination by reverse osmosis. Industrial and Engineering Chemistry Fundamentals, 4, 113–118. https://doi.org/10.1021/i160014a001.

    Article  Google Scholar 

  29. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena (2nd ed.). New York: Wiley.

    Google Scholar 

  30. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods (2nd ed.). New York: Wiley.

    Google Scholar 

  31. Gileadi, E. (1993). Electrode kinetics for chemists, chemical engineers, and material scientists. New York: Wiley-VCH.

    Google Scholar 

  32. Goldstein, R. J., & Cho, H. H. (1995). A review of mass-transfer measurements using naphthalene sublimation. Experimental Thermal and Fluid Science, 10, 416–434. https://doi.org/10.1016/0894-1777(94)00071-F.

    Article  Google Scholar 

  33. Beale, S. B. (2005). Mass transfer in plane and square ducts. International Journal of Heat and Mass Transfer, 48, 3256–3260. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.037.

    Article  MATH  Google Scholar 

  34. Beale, S. B. (2004). Calculation procedure for mass transfer in fuel cells. Journal of Power Sources, 128, 185–192. https://doi.org/10.1016/j.jpowsour.2003.09.053.

    Article  Google Scholar 

  35. Beale, S. B. (2015). Mass transfer formulation for polymer electrolyte membrane fuel cell cathode. International Journal of Hydrogen Energy, 40, 11641–11650. https://doi.org/10.1016/j.ijhydene.2015.05.074.

    Article  Google Scholar 

  36. Beale, S. B., Reimer, U., Froning, D., Jasak, H., Andersson, M., Pharoah, J. G., et al. (2018). Stability issues of fuel cell models in the activation and concentration regimes. Journal of Electrochemical Energy Conversion, 15, 041008. https://doi.org/10.1115/1.4039858.

    Article  Google Scholar 

  37. Patankar, S. V. (1980). Numerical heat transfer and fluid flow. New York: Hemisphere.

    Google Scholar 

  38. Retrieved June 25, 2018, from http://www.Cham.Co.Uk/phoenics/d_polis/d_enc/coval.Htm.

  39. Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Journal of Computational Physics, 12, 620–631. https://doi.org/10.1063/1.168744.

    Article  Google Scholar 

  40. Nield, D. A., & Bejan, A. (1999). Convection in porous media (2nd ed.). New York: Springer.

    Book  Google Scholar 

  41. Beale, S. B. (2012). A simple, effective viscosity formulation for turbulent flow and heat transfer in compact heat exchangers. Heat Transfer Engineering, 33, 4–11. https://doi.org/10.1080/01457632.2011.584807.

    Article  Google Scholar 

  42. Bell, K. J. (2004). Heat exchanger design for the process industries. Journal of Heat Transfer, 126, 877–885. https://doi.org/10.1115/1.1833366.

    Article  Google Scholar 

  43. Butterworth, D. (1977). The development of a model for three-dimensional flow in tube bundles. International Journal of Heat and Mass Transfer, 21, 253–256. https://doi.org/10.1016/0017-9310(78)90231-4.

    Article  Google Scholar 

  44. Rhodes, D. B., & Carlucci, L. N. (1983). Predicted and measured velocity distributions in a model heat exchanger. In Proceedings CNS/ANS International Conference on Numerical Methods in Nuclear Engineering, Montreal.

    Google Scholar 

  45. Theodossiou, V. M., & Sousa, A. C. M. (1988). Flow field predictions in a model heat exchanger. Computational Mechanics, 3, 419–428. https://doi.org/10.1007/BF00301142.

    Article  MATH  Google Scholar 

  46. Prithiviraj, M., & Andrews, M. J. (1998). Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: Foundation and fluid mechanics. Numerical Heat Transfer Part A, 33, 799–816. https://doi.org/10.1080/10407789808913967.

    Article  Google Scholar 

  47. Prithiviraj, M., & Andrews, M. J. (1998). Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part II: Heat transfer. Numerical Heat Transfer Part A, 33, 817–828. https://doi.org/10.1080/10407789808913968.

    Article  Google Scholar 

  48. Sundén, B. (2007). Computational fluid dynamics in research and design of heat exchangers. Heat Transfer Engineering, 28, 898–910. https://doi.org/10.1080/01457630701421679.

    Article  Google Scholar 

  49. Kvesić, M., Reimer, U., Froning, D., Lüke, L., Lehnert, W., & Stolten, D. (2012). 3D modeling of a 200 cm2 HT-PEFC short stack. International Journal of Hydrogen Energy, 37, 2430–2439. https://doi.org/10.1016/j.ijhydene.2011.10.055.

    Article  Google Scholar 

  50. Zhang, S., Beale, S. B., Reimer, U., Nishida, R. T., Andersson, M., Pharoah, J. G., et al. (2018). Simple and complex polymer electrolyte fuel cell stack models: A comparison. ECS Transactions, 86, 287–300. https://doi.org/10.1149/08613.0287ecst.

    Article  Google Scholar 

  51. Beale, S. B., & Zhubrin, S. V. (2005). A distributed resistance analogy for solid oxide fuel cells. Numerical Heat Transfer Part B-Fundamentals, 47, 573–591. https://doi.org/10.1080/10407790590907930.

    Article  Google Scholar 

  52. Retrieved June 27, 2019 from http://www.Cham.Co.Uk/.

  53. Retrieved June 25, 2019 from http://www.Cham.Co.Uk/phoenics/d_polis/d_lecs/plant/hex/hex.Htm.

  54. Kvević, M. (2013). Modellierung und simulation von hochtemperatur-polymerelektrolyt-brennstoffzellen (Vol. 158). Jülich: Forschungszentrum Jülich GmbH. ISBN 978-3-89336-853-8.

    Google Scholar 

  55. Nishida, R., Beale, S., Pharoah, J., de Haart, L., & Blum, L. (2018). Three-dimensional computational fluid dynamics modelling and experimental validation of the jülich mark-f solid oxide fuel cell stack. Journal of Power Sources, 373, 203–210.

    Article  Google Scholar 

  56. Nishida, R. T. (2013). Computational fluid dynamics modelling of solid oxide fuel cell stacks. M.Sc., Queen’s University.

    Google Scholar 

  57. Nishida, R. T., Beale, S. B., & Pharoah, J. G. (2016). Comprehensive computational fluid dynamics model of solid oxide fuel cell stacks. International Journal of Hydrogen Energy, 41, 20592–20605. https://doi.org/10.1016/j.ijhydene.2016.05.103.

    Article  Google Scholar 

  58. Retrieved June 27, 2019 from https://openfoam.Org/.

  59. Bradley, D. (2018). Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Beale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beale, S.B., Zhang, S., Andersson, M., Nishida, R.T., Pharoah, J.G., Lehnert, W. (2020). Heat and Mass Transfer in Fuel Cells and Stacks. In: Runchal, A. (eds) 50 Years of CFD in Engineering Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-2670-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2670-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2669-5

  • Online ISBN: 978-981-15-2670-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics