Skip to main content

Thermohydraulic Performance of Packed Bed Solar Air Heater

  • Conference paper
  • First Online:
Advances in Energy Research, Vol. 2

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 509 Accesses

Abstract

An experimental investigation is carried out as per ASHRAE standards on a high porosity packed bed solar air heater. Packed bed is generally used to enhance the heat transfer area and also for storage of thermal energy. The work covers a particular range of design and operating parameters. Design parameters include the colour of packing material (black and normal metal colour), packing Reynolds number (900–8000), porosity (0.9 and 0.8) and equivalent diameter of packing material (1.55 mm). Operating parameter includes a wide range of mass flow rate ranging from 0.01 to 0.04 kg/s. It is found that black-coated wool gives a better thermal efficiency. Further, both heat transfer coefficient and friction factor are strong functions of geometrical parameters of the porous packed bed. A decrease in porosity level increases the volumetric heat transfer coefficient. A maximum of 91.7% thermal efficiency is achieved at a mass flow rate of 0.04 kg/s and at a porosity of 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Effective heat transfer area (m2)

A c :

Collector plate area (m2)

A f :

Frontal area (m2)

A o :

Cross-sectional area of pitot tube (m2)

a v :

Specific surface area per unit volume (m−1)

c p :

Specific heat of air (J/Kg K)

C v :

Coefficient of velocity for pitot tube

D :

Depth of rectangular duct (m)

d e :

Equivalent diameter of aluminium wool (m)

f p :

Friction factor of packed bed

G o :

Relative mass flow rate of air in the duct (kg/s m2)

g :

Acceleration due to gravity (m/s2)

h :

Average heat transfer coefficient (W/m2 K)

h v :

Volumetric heat transfer coefficient, h × av

I :

Intensity of solar radiation (W/m2)

L :

Length of rectangular duct (m)

m :

Mass flow rate of air (kg/s)

P :

Porosity

∆P :

Pressure drop across the duct (N/m2)

Re p :

Reynolds number of packed bed, 4rhGo/μ

r h :

Hydraulic radius, Pde/4(1−P)

t f :

Average air temperature (K), (ti + to)/2

t i :

Air inlet temperature (K)

t o :

Air outlet temperature (K)

t p :

Average packed bed temperature (K)

u :

Air velocity in the packed duct, u = G0/ρ

V :

Volume of packed bed (m3)

V e :

Volume of material element (m3)

V s :

Total volume of storage material packed in the duct (m3)

W :

Width of rectangular duct (m)

Q :

Heat transfer rate (W)

x :

Manometer reading (m)

μ :

Dynamic viscosity of air (N s/m2)

ρ :

Density of air (kg/m3)

ρ m :

Density of manometer fluid (kg/m3)

η :

Thermal efficiency

References

  1. S. Kalogirou, The potential of solar industrial process heat applications. Appl. Energy 76(4), 337–361 (2003)

    Article  Google Scholar 

  2. B.M. Ramani, A. Gupta, R. Kumar, Performance of a double pass solar air collector. Sol. Energy 84, 1929–1937 (2010)

    Article  Google Scholar 

  3. H. Esen, Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(6), 1046–1054 (2008)

    Article  Google Scholar 

  4. V.S. Hans, R.P. Jain, J.S. Saini, Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. Sol. Energy 84, 898–911 (2010)

    Article  Google Scholar 

  5. H.M. Yeh, C.D. Ho, J.Z. Hou, Collector efficiency of double-flow solar air heaters with fins attached. Energy 27(8), 715–727 (2002)

    Article  Google Scholar 

  6. A. Fudholi, K. Sopian, M.H. Ruslan, M.Y. Othman, Performance and cost benefits analysis of double-pass solar collector with and without fins. Energy Convers. Manage. 6, 8–19 (2013)

    Article  Google Scholar 

  7. C.D. Ho, H. Chang, R.C. Wang, C.L. Sheng, Analytical and experimental study of recycling baffled double pass solar air heater with attached fins. Energies 6(4), 1821–1842 (2013)

    Article  Google Scholar 

  8. D.L. Zhao, Y. Li, Y.J. Dai, R.Z. Wang, Optimal study of a solar air heating system with pebble bed energy storage. Energy Conserv. Manage. 52(6), 2392–2400 (2011)

    Article  Google Scholar 

  9. I. Varshney, J.S. Saini, Heat transfer and friction factor correlations for rectangular solar air heater duct packed with wire mesh screen matrices. Sol. Energy 62(4), 255–262 (1998)

    Article  Google Scholar 

  10. R.K. Swartman, O. Ogunlade, An investigation on packed bed collectors. Sol. Energy 10(3), 106–110 (1966)

    Article  Google Scholar 

  11. A. Kolb, E.R.F. Winter, R. Viskanta, Experimental studies on a solar air collector with metal matrix absorber. Sol. Energy 65(2), 91–98 (1999)

    Article  Google Scholar 

  12. J.P. Chiou, M.M. El-Wakil, J.A. Duffle, A slit and expanded aluminium foil matrix solar collector. Sol. Energy 9, 73–80 (1965)

    Article  Google Scholar 

  13. M.R.I. Ramadan, A.A. El-Sebaii, S. Aboul-Enein, E. El-Bialy, Thermal performance of a packed bed double-pass solar air heater. Energy 32, 1524–1535 (2007)

    Article  Google Scholar 

  14. C. Choudhary, H.P. Garg, Performance of air-heating collectors with packed air flow passage. Sol. Energy 50(3), 205–221 (1993)

    Article  Google Scholar 

  15. W.M. Kays, A.L. London, Compact Heat Exchanger (McGraw-Hill, New York, 1964)

    Google Scholar 

  16. A.A. Mohamad, Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature. Int. J. Therm. Sci. 42(4), 385–395 (2003)

    Article  Google Scholar 

  17. N.S. Thakur, J.S. Saini, S.C. Solanki, Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system. Sol. Energy 74, 319–329 (2003)

    Article  Google Scholar 

  18. B.I. Pavel, A.A. Mohamad, An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. Int. J. Heat Mass Transf. 47(23), 4939–4952 (2004)

    Article  Google Scholar 

  19. M.K. Mittal, L. Varshney, Optimal thermo hydraulic performance of a wire mesh packed solar air heater. Sol. Energy 80, 1112–1120 (2006)

    Article  Google Scholar 

  20. ASHRAE Standard, Methods of Testing to Determine the Thermal Performance of Solar Collectors (ASHRAE, New York, 1977), pp. 93–97

    Google Scholar 

  21. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 1991)

    Google Scholar 

  22. M.S. Bhatti, R.K. Shah, Turbulent and transition flow convective heat transfer in ducts, in Handbook of Single Phase Convective Heat Transfer, ed. by S. Kakac, R.K. Shah, W. Aung (Wiley, New York, 1987)

    Google Scholar 

  23. P. Tiwari, A. Kumar, R.M. Sarviya, Thermal performance of packed bed solar air heater. IEEE (2013)

    Google Scholar 

  24. M.F. Khawajah, L.B.Y. Aldabbagh, F. Egelioglu, The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Sol. Energy 85(7), 1479–1487 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debendra Chandra Baruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bezbaruah, P.J., Borah, D., Patowary, R., Baruah, D.C. (2020). Thermohydraulic Performance of Packed Bed Solar Air Heater. In: Singh, S., Ramadesigan, V. (eds) Advances in Energy Research, Vol. 2. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-2662-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2662-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2661-9

  • Online ISBN: 978-981-15-2662-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics