Skip to main content

Fractal Analysis of Heart Dynamics During Attention Task

  • Chapter
  • First Online:
Advances in Computational Intelligence Techniques

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 468 Accesses

Abstract

Heart and brain recurrently interact to mediate human cognitive information processing. This chapter identifies nonlinear variations of heart activities acquired during internally and externally operative attention using multifractal analysis. Fourteen healthy subjects voluntarily participated in the experiment designed as per Posner’s spatial cueing paradigm. The multifractal spectrum width for the baseline and recovery session was observed as 1.35 ± 0.21 and 1.41 ± 0.14 (mean ± standard deviation), respectively, which reveals that the heart rhythm exhibits the existence of long-range correlation and Gaussian spectrum shape. Moreover, for internally operative attention task, the significant variation was observed from baseline and recovery session with a spectrum width of 1.28 ± 0.21 and no change in multifractal spectrum shape. However, for the externally operative attention task, subjects have shown significant variation from baseline, while insignificant variation from recovery session with a spectrum width of 1.31 ± 0.19 and no change in spectrum shape. Although for internally and externally operative attention task, the multifractal dimension analysis reveals that heart rhythm possessed fractal behavior with reduced spectrum width and no change in the shape of the multifractal spectrum concerning baseline and recovery session. Fractal variations of heart dynamics found to quantify internally and externally operative attention concerning baseline and recovery session, which may support us to design robust brain–computer interfaces, accelerated sports, and defense training paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berka C, Levendowski DJ, Cvetinovic MM, et al (2004) Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int J Hum Comput Interact 17:151–170. https://doi.org/10.1207/s15327590ijhc1702_3

    Article  Google Scholar 

  2. Berka C, Levendowski DJ, Lumicao MN et al (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78:B231–B244

    Google Scholar 

  3. Castiglioni P, Faini A (2019) A fast DFA algorithm for multifractal multiscale analysis of physiological time series. Front Physiol 10. https://doi.org/10.3389/fphys.2019.00115

  4. Chica AB, Bartolomeo P, Lupiáñez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123. https://doi.org/10.1016/j.bbr.2012.09.027

    Article  Google Scholar 

  5. Chica AB, Martín-Arévalo E, Botta F, Lupiáñez J (2014) The spatial orienting paradigm: how to design and interpret spatial attention experiments. Neurosci Biobehav Rev 40:35–51. https://doi.org/10.1016/j.neubiorev.2014.01.002

    Article  Google Scholar 

  6. Chun MM, Golomb JD, Turk-Browne NB (2011) A taxonomy of external and internal attention. Annu Rev Psychol 62:73–101. https://doi.org/10.1146/annurev.psych.093008.100427

    Article  Google Scholar 

  7. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. https://doi.org/10.1038/nrn755

    Article  Google Scholar 

  8. Esterman M, Prinzmetal W, DeGutis J et al (2008) Voluntary and involuntary attention affect face discrimination differently. Neuropsychologia 46:1032–1040. https://doi.org/10.1016/j.neuropsychologia.2007.11.014

    Article  Google Scholar 

  9. Faes L, Marinazzo D, Jurysta F, Nollo G (2015) Linear and non-linear brain-heart and brain-brain interactions during sleep. Physiol Meas 36:683–698. https://doi.org/10.1088/0967-3334/36/4/683

    Article  Google Scholar 

  10. Faes L, Nollo G, Porta A (2011) Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front Physiol 2:1–13. https://doi.org/10.3389/fphys.2011.00080

  11. Fink PW, Shultz SP, D’Hondt E et al (2018) Multifractal analysis differentiates postural sway in obese and nonobese children. Mot Control 23:262–271. https://doi.org/10.1123/mc.2016-0085

    Article  Google Scholar 

  12. Gazzaniga MS, Ivry RB, Mangun GR (1998) Cognitive neuroscience: the biology of the mind, 4th edn. W. W. Norton & Company Ltd, New York, USA

    Google Scholar 

  13. Griffin IC, Nobre AC (2003) Orienting attention to locations in internal representations. J Cogn Neurosci 15:1176–1194. https://doi.org/10.1162/089892903322598139

    Article  Google Scholar 

  14. Hansen AL, Johnsen BH, Thayer JF (2003) Vagal influence on working memory and attention. Int J Psychophysiol 48:263–274. https://doi.org/10.1016/S0167-8760(03)00073-4

    Article  Google Scholar 

  15. Hopfinger JB, West VM (2006) Interactions between endogenous and exogenous attention on cortical visual processing. Neuroimage 31:774–789. https://doi.org/10.1016/j.neuroimage.2005.12.049

    Article  Google Scholar 

  16. Ibáñez-Molina AJ, Iglesias-Parro S (2014) Fractal characterization of internally and externally generated conscious experiences. Brain Cogn 87:69–75. https://doi.org/10.1016/j.bandc.2014.03.002

    Article  Google Scholar 

  17. Ihlen EAF (2012) Introduction to multifractal detrended fluctuation analysis in Matlab. Front Physiol 3:1–18. https://doi.org/10.3389/fphys.2012.00141

  18. Kantelhardt JW, Koscielny-Bunde E, Rego HH et al (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A Stat Mech its Appl 295:441–454. https://doi.org/10.1016/S0378-4371(01)00144-3

    Article  MATH  Google Scholar 

  19. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E et al (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys Stat Mech Appl 316:87–114. https://doi.org/10.1016/S0378-4371(02)01383-3

    Article  MATH  Google Scholar 

  20. Landau AN, Elwan D, Holtz S, Prinzmetal W (2012) Voluntary and involuntary attention vary as a function of impulsivity. Psychon Bull Rev 19:405–411. https://doi.org/10.3758/s13423-012-0240-z

    Article  Google Scholar 

  21. Landau AN, Esterman M, Robertson LC et al (2007) Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J Neurosci 27:11986–11990. https://doi.org/10.1523/JNEUROSCI.3092-07.2007

    Article  Google Scholar 

  22. Mary HMC, Singh D, Deepak KK (2019) Assessment of Scale Invariance Changes in Heart Rate Signal During Postural Shift. IETE J Res 2063:1–7. https://doi.org/10.1080/03772063.2019.1604172

  23. McCraty R, Zayas MA (2014) Cardiac coherence, self-regulation, autonomic stability and psychosocial well-being. Front Psychol 5:1–13. https://doi.org/10.3389/fpsyg.2014.01090

    Article  Google Scholar 

  24. Mercy Cleetus HM, Singh D (2014) Multifractal application on electrocardiogram. J Med Eng Technol 38:55–61. https://doi.org/10.3109/03091902.2013.849298

    Article  Google Scholar 

  25. Müller HJ, Rabbitt PMA (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15:315–330. https://doi.org/10.1037/0096-1523.15.2.315

    Article  Google Scholar 

  26. Nobre AC, Coull JT, Maquet P et al (2004) Orienting attention to locations in perceptual versus mental representations. J Cogn Neurosci 16:363–373. https://doi.org/10.1162/089892904322926700

    Article  Google Scholar 

  27. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325

    Article  Google Scholar 

  28. Prinzmetal W, McCool C, Park S (2005) Attention: reaction time and accuracy reveal different mechanisms. J Exp Psychol Gen 134:73–92. https://doi.org/10.1037/0096-3445.134.1.73

    Article  Google Scholar 

  29. Prinzmetal W, Zvinyatskovskiy A, Gutierrez P, Dilem L (2009) Voluntary and involuntary attention have different consequences: the effect of perceptual difficulty. Q J Exp Psychol 62:352–369. https://doi.org/10.1080/17470210801954892

    Article  Google Scholar 

  30. Roijendijk L, Farquhar J, Van Gerven M et al (2013) Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing. PLoS One 8. https://doi.org/10.1371/journal.pone.0080489

    Article  Google Scholar 

  31. Singh A, Saini BS, Singh D (2016) An adaptive technique for multiscale approximate entropy (MAEbin) threshold (r) selection: application to heart rate variability (HRV) and systolic blood pressure variability (SBPV) under postural stress. Australas Phys Eng Sci Med 39:557–569. https://doi.org/10.1007/s13246-016-0432-3

    Article  Google Scholar 

  32. Telesca L, Colangelo G, Lapenna V, Macchiato M (2004) Fluctuation dynamics in geoelectrical data: an investigation by using multifractal detrended fluctuation analysis. Phys Lett A 332:398–404. https://doi.org/10.1016/j.physleta.2004.10.011

    Article  MATH  Google Scholar 

  33. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 37:141–153. https://doi.org/10.1007/s12160-009-9101-z

    Article  Google Scholar 

  34. Thomaz CE (2012) FEI face database. FEI Face DatabaseAvailable

    Google Scholar 

  35. Van Der Lubbe RHJ, Bundt C, Abrahamse EL (2014) Internal and external spatial attention examined with lateralized EEG power spectra. Brain Res 1583:179–192. https://doi.org/10.1016/j.brainres.2014.08.007

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge support and motivation provided by faculty and staff of the department of instrumentation and control engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Singh, D., Deepak, K.K. (2020). Fractal Analysis of Heart Dynamics During Attention Task. In: Jain, S., Sood, M., Paul, S. (eds) Advances in Computational Intelligence Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2620-6_7

Download citation

Publish with us

Policies and ethics