Skip to main content

Automatic Glaucoma Diagnosis in Digital Fundus Images Using Deep CNNs

  • Chapter
  • First Online:
Advances in Computational Intelligence Techniques

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

The World Health Organization (WHO) approximates that more than 42 million people are currently blind in the world, 80 per cent of which could have been prevented or cured by early detection. According to a survey, glaucoma is the second most leading cause for blindness after cataract. It is an irreversible eye disease, and once the vision is lost, it cannot be recovered. Thus, it is vital to develop an automatic computerized tool to diagnose the disease. In this paper, a novel and robust deep learning-based convolutional neural networks (CNNs) architecture has been proposed to deal with the problem. The network consists of six convolutional layers, with various activation functions, and pooling layers to get the abstract and detailed information of the input image. The proposed architecture predicts the probability of an image being glaucoma. The model has been experimented with Refugee and Drishti datasets. Our proposed model is able to diagnose the glaucoma disease automatically with an accuracy of 90%, sensitivity of 96%, and specificity of 84%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization Media centre: visual impairment and blindness

    Google Scholar 

  2. Rogers K (2011) The eye: the physiology of human perception, First edn. Britannica Educational Publishing, 29 East 21st Street, New York, NY

    Google Scholar 

  3. Glaucoma Foundation (2012) Understanding and living with glaucoma, pp 1–36, 2012

    Google Scholar 

  4. Bhowmik D, Kumar KS, Deb L, Paswan S, Dutta AS (2012) Glaucoma—a eye disorder. Its causes, risk factors, prevention and medication. Pharma Innov 1(1):66–82, 2012. Retrived from www.Thepharmajournal.Com

  5. Narasimhan K, Vijayarekha K (2011) An efficient automated system for glaucoma detection using fundus image. J Theor App Technol 33(1):104–110

    Google Scholar 

  6. Sharangouda N (2015) Automated glaucoma detection in retina from cup to disk ratio using morphology and vessel bend techniques. Int J Adv Res Comput Commun Eng 4(6):139–142

    Google Scholar 

  7. Anderson D (2013) The optic nerve in glaucoma. Duane’s Ophthalmol., p. chap 48

    Google Scholar 

  8. Sivaswamy J et al (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Papers 2(1)

    Google Scholar 

  9. Sri Abirami S et al (2013) Glaucoma images classification using fuzzy min-max neural network based on dta-core. Int J Sci Mod Eng (IJISME) 1(7). ISSN: 2319–6386

    Google Scholar 

  10. McIntyre R et al (2004) Toward glaucoma classification with moment methods. In: Proceedings of the first Canadian conference on computer and robot vision. IEEE

    Google Scholar 

  11. Almazroa A, Alodhayb S, Raahemifar K, Lakshminarayanan V (2017) An automatic image processing system for glaucoma screening. Int J Biomed Imaging vol 2017, Article ID 4826385, 19 pages

    Google Scholar 

  12. Almazroa A, Alodhayb S, Osman E, Ramadan E, Hummadi M, Dlaim M, Alkatee M, Raahemifar K, Lakshminarayanan V (2018) Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Medical imaging 2018: imaging informatics for healthcare, research, and applications, pp 8

    Google Scholar 

  13. Sun W, Alodhayb S, Almazroa A, Raahemifar K, Lakshminarayanan V (2017) Optic disc segmentation for glaucoma screening system using fundus images. Clin Ophthalmol 11:2017–2029

    Article  Google Scholar 

  14. Kumar BN, Chauhan RP, Dahiya N (2016) Detection of glaucoma using image processing techniques: a review. In: 2016 international conference on microelectronics, computing and communications (MicroCom). Durgapur, pp 1–6. https://doi.org/10.1109/micro-Com.2016.7522515

  15. Acharya UR, Du Dua S, Du X, Sree V, Chua CK (2011) Automated diagnosis of glaucoma using texture and higher order spectra features. Inform Technol Biomed IEEE Trans 15(3):449–455

    Article  Google Scholar 

  16. Society. 27th Annual International Conference of the, pp 6608–6611 IEEE, 2006

    Google Scholar 

  17. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  18. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

    Google Scholar 

  19. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    Google Scholar 

  20. Goodfellow IJ, Pouget-Abadie J et al (2014) Generative adversarial networks. arXiv:1406.2661

  21. Chen X, Xu Y, Wong DWK, Wong TY, Liu J (2015) Glaucoma detection based on deep convolutional neural network. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milan, pp 715–718. https://doi.org/10.1109/embc.2015.7318462

  22. Abramoff M (2010) Retinal image analysis. Eng IEEE Rev 169–208

    Google Scholar 

  23. Wong DK et al (2008) Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In: Conference in proceedings of IEEE engineering in medicine and biology society, vol 2008, no 2, pp 2266–2269

    Google Scholar 

  24. Liu J et al (2009) ARGALI: an automatic cup-to-disc ratio measurement system for glaucoma analysis using level-set image processing. In: Lim CT, Goh JCH (eds) 13th international conference on biomedical engineering. IFMBE proceedings, vol 23. Springer, Berlin, Heidelberg

    Google Scholar 

  25. Cheng J et al (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 32(6):1019–1032. https://doi.org/10.1109/TMI.2013.2247770

    Article  Google Scholar 

  26. Yin F et al (2012) Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: Proceedings of IEEE symposium on computer-based medical systems

    Google Scholar 

  27. Juneja M, Singh S, Agarwal N et al (2019) Automated detection of Glaucoma using deep learning convolution network (G-net). I:n Multimed Tools Appl. https://doi.org/10.1007/s11042-019-7460-4

  28. Xu Y et al (2011) Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6893. Springer, Berlin, Heidelberg

    Google Scholar 

  29. Xu Y, Lin S, Wong DWK, Liu J, Xu D (2013) Efficient reconstruction-based optic cup localization for glaucoma screening. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N. (eds) Medical image computing and computer-assisted intervention—MICCAI 2013. MIC-CAI 2013. Lecture Notes in Computer Science, vol 8151. Springer, Berlin, Heidelberg

    Google Scholar 

  30. Sevastopolsky A (2017) Pattern recognit. Image Anal 27:618. https://doi.org/10.1134/S1054661817030269

    Article  Google Scholar 

  31. Mvoulana A et al (2017) Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Comput Med Imaging Graph 101643. https://doi.org/10.1016/j.compmedimag.2019.101643. Epub 2019 Aug 14

    Article  Google Scholar 

  32. Al-Bander B, Williams BM, Al-Nuaimy W, Al-Taee MA, Pratt H, Zheng Y (2018) Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 10:87

    Article  Google Scholar 

  33. Diaz-Pinto A et al (2019) CNNs for automatic glaucoma assessment using fundus images: an extensive validation. J BioMed Eng OnLine. https://doi.org/10.1186/s12938-019-0649-y

  34. Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J (2015) Automatic feature learning for glaucoma detection based on deep learning. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing an computer-assisted intervention—MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham

    Google Scholar 

  35. Abbas Q (2017) Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl (IJACSA) 8(6). http://dx.doi.org/10.14569/IJACSA.2017.080606

  36. Bengio Y, Courville A, Goodfellow IJ (2016) Deep learning adaptive computation and machine learning. The MIT Press

    Google Scholar 

  37. Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, Tabish AUS (2014) Drishti-GS: retinal image dataset for optic nerve head(ONH) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). Beijing, pp 53–56

    Google Scholar 

  38. Xu Y Chinese Academy of Sciences, China, https://refuge.grand-challenge.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambika Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Agrawal, M., Roy, S.D., Gupta, V. (2020). Automatic Glaucoma Diagnosis in Digital Fundus Images Using Deep CNNs. In: Jain, S., Sood, M., Paul, S. (eds) Advances in Computational Intelligence Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2620-6_3

Download citation

Publish with us

Policies and ethics