Skip to main content

Artificial Intelligence in Bioinformatics

  • Chapter
  • First Online:
Advances in Computational Intelligence Techniques

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Bioinformatics is a multidisciplinary field of managing health information digitally, which can be used further for analyzing and justifying the biological behavior of the nature. In the advancement of different computational tools and algorithms, these biological data can be managed very efficiently, and by analyzing those data, it is very much possible to find and discover different unknown mysteries of nature like the cause of happening any disease, the evolution of biological objects like virus, bacteria or any kind of living species, customized drug management, prediction of protein structure, DNA sequencing, etc. In the era of digitization, there are huge amount of biological data that are now possible to store in digital platform, and these can be processed through various computational tools that can analyze those data and produce various statistical reports. Machine learning in the domain of artificial intelligence is now a common tool for different bioinformatics applications. The main advantages of machine learning techniques are to predict the optimized results based on the previous data record. In this paper, we will discuss about the different tools and its application on bioinformatics and the artificial intelligence approach to the bioinformatics application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantas J (2016) Biomedical and health informatics education—the IMIA Years. Yearb Med Inform (Suppl. 1):S92–S102

    Article  Google Scholar 

  2. Thampi SM (2009) Introduction to bioinformatics. arXiv:0911.4230

  3. Can T (2014) Introduction to bioinformatics. In: Yousef M, Allmer J (eds) miRNomics: microRNA biology and computational analysis. Humana Press, Totowa, NJ, pp 51–71

    Google Scholar 

  4. Sree Divya K, Bhargavi P, Singaraju J (2018) Machine learning algorithms in big data analytics. Int J Comput Sci Eng 6:63–70

    Article  Google Scholar 

  5. Kumar S, Singh M (2019) Big data analytics for healthcare industry: impact, applications, and tools. Big Data Min Anal 2(1):48–57

    Article  Google Scholar 

  6. O’Driscoll A, Daugelaite J, Sleator RD (2013) ‘Big data’, Hadoop and cloud computing in genomics. J Biomed Inform 46(5):774–781

    Article  MATH  Google Scholar 

  7. Nicolas J (27 July 2018) Artificial intelligence and bioinformatics. Available from https://hal.inria.fr/hal-01850570

  8. Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLoS Comput Biol 7(3):e1002021

    Article  Google Scholar 

  9. Lindsay RK et al (1993) DENDRAL: a case study of the first expert system for scientific hypothesis formation. Artif Intell 61(2):209–261

    Article  Google Scholar 

  10. Hayes-Roth B et al (1986) PROTEAN: deriving protein structure from constraints. American Association for Artificial Intelligence

    Google Scholar 

  11. Feigenbaum EA, Buchanan BG (1993) DENDRAL and Meta-DENDRAL: roots of knowledge systems and expert system applications. Artif Intell 59(1):233–240

    Article  Google Scholar 

  12. Müller UR, Nicolau DV (2005) Microarray technology and its applications. Springer, Berlin

    Google Scholar 

  13. Narayanan A, Keedwell E, Olsson B (2002) Artificial intelligence techniques for bioinformatics. App Bioinform 1:191–222

    Google Scholar 

  14. Oyelade O et al (2015) Bioinformatics, healthcare informatics and analytics: an imperative for improved healthcare system. Int J Appl Inf Syst 8(5):1–6

    Google Scholar 

  15. Bagga PS (2012) Development of an undergraduate bioinformatics degree program at a liberal arts college. Yale J Biol Med 85(3):309–321

    Google Scholar 

  16. Koonin EV, Galperin M (2013) Sequence—evolution—function: computational approaches in comparative genomics. Springer Science & Business Media, New York

    Google Scholar 

  17. Zvelebil MJ, Baum JO (2007) Understanding bioinformatics. Garland Science, New York

    Google Scholar 

  18. Krogh A (1998) An introduction to hidden Markov models for biological sequences. In: Salzberg SL, Searls DB, Kasif S (eds) New comprehensive biochemistry, Chapter 4. Elsevier, Amsterdam, pp 45–63

    Chapter  Google Scholar 

  19. Ji S (2004) Molecular information theory: solving the mysteries of DNA. In: Ciobanu G, Rozenberg G (eds) Modelling in molecular biology. Springer, Berlin, Heidelberg, pp 141–150

    Google Scholar 

  20. Ezziane Z (2006) Applications of artificial intelligence in bioinformatics: a review. Expert Syst Appl 30(1):2–10

    Article  Google Scholar 

  21. Breda A et al (2007) Protein structure, modelling and applications. National Center for Biotechnology Information (US)

    Google Scholar 

  22. Gopal K et al (2006) TEXTAL: crystallographic protein model building using AI and pattern recognition. AI Mag 27(3):15

    Google Scholar 

  23. Holbrook SR, Muskal SM, Kim S-H (1993) Predicting protein structural features with artificial neural networks. In: Artificial intelligence and molecular biology. AAAI Press, Menlo Park, p 162

    Google Scholar 

  24. Kellis M et al (2014) Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA 111(17):6131–6138

    Article  Google Scholar 

  25. Yip KY, Cheng C, Gerstein M (2013) Machine learning and genome annotation: a match meant to be? Genome Biol 14(5):205

    Article  Google Scholar 

  26. Eddy SR (1998) Profile hidden Markov models. Bioinform (Oxford, England) 14(9):755–763

    Article  Google Scholar 

  27. Pellegrini M et al (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96(8):4285–4288

    Article  Google Scholar 

  28. Mattfeldt T et al (2001) Cluster analysis of comparative genomic hybridization (CGH) data using self-organizing maps: application to prostate carcinomas. Anal Cell Pathol: J Eur Soc Anal Cell Pathol 23(1):29–37

    Article  MathSciNet  Google Scholar 

  29. Gill SK et al (2016) Emerging role of bioinformatics tools and software in evolution of clinical research. Perspect Clin Res 7(3):115–122

    Article  Google Scholar 

  30. Fujiwara T, Kamada M, Okuno Y (2018) Artificial intelligence in drug discovery. Gan To Kagaku Ryoho 45(4):593–596

    Google Scholar 

  31. Duch W, Swaminathan K, Meller J (2007) Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 13(14):1497–1508

    Article  Google Scholar 

  32. Agrawal P (2018) Artificial intelligence in drug discovery and development. J Pharmacovigil 6:2

    Google Scholar 

  33. Food and Drug Administration (2019) Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based Software as a Medical Device (SaMD). Discussion paper and request for feedback

    Google Scholar 

  34. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  35. Krogh A et al (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235(5):1501–1531

    Article  Google Scholar 

  36. Daugelaite J, Driscoll AO’, Sleator RD (2013) An overview of multiple sequence alignments and cloud computing in bioinformatics. ISRN Biomath. 2013:14

    Google Scholar 

  37. American Association for the Advancement of Science (2005) Tools: a bigger blast. Sci 309(5743):1971

    Google Scholar 

  38. Garg VK et al (2016) MFPPI—Multi FASTA ProtParam Interface. Bioinformation 12(2):74–77

    Article  Google Scholar 

  39. Allen JE et al (2006) JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol 7(Suppl 1):S9.1–S9.13

    Article  Google Scholar 

  40. Rombel IT et al (2002) ORF-FINDER: a vector for high-throughput gene identification. Gene 282(1–2):33–41

    Article  Google Scholar 

  41. Kanhere A, Bansal M (2005) A novel method for prokaryotic promoter prediction based on DNA stability. BMC Bioinform 6:1

    Google Scholar 

  42. Munch R et al (2005) Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinform 21(22):4187–4189

    Article  Google Scholar 

  43. Mitra A et al (2011) WebGeSTer DB—a transcription terminator database. Nucleic Acids Res. 39(Database issue):D129–D135

    Article  Google Scholar 

  44. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA11. Edited by F. E. Cohen. J Mol Biol 268(1):78–94

    Google Scholar 

  45. Mehmood MA, Sehar U, Ahmad N (2014) Use of bioinformatics tools in different spheres of life sciences. J. Data Min. Genomics & Proteomics 5(2):1

    Google Scholar 

  46. Kidd KK, Sgaramella-Zonta LA (1971) Phylogenetic analysis: concepts and methods. Am J Hum Genet 23(3):235–252

    Google Scholar 

  47. Doroshkov AV et al (2019) The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC Plant Biol 19(Suppl. 1):53

    Google Scholar 

  48. Kumar S et al (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  Google Scholar 

  49. Katara P (2013) Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinform 2(4):225–230

    Article  Google Scholar 

  50. Majhi V, Paul S, Jain R (2019) Bioinformatics for healthcare applications. In: 2019 Amity international conference on artificial intelligence (AICAI)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majhi, V., Paul, S. (2020). Artificial Intelligence in Bioinformatics. In: Jain, S., Sood, M., Paul, S. (eds) Advances in Computational Intelligence Techniques. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2620-6_12

Download citation

Publish with us

Policies and ethics