Skip to main content

Abstract

Internet of things (IoT) is the finest metric following technology that turns the attention of the people throughout the world. IoT is a global connecting network that allows people to connect with each other largely. It is a challenging technology due to its complex environment and resource-dependent features. Different surveys depict that there may be several billions of IoT users by 2020. There are numerous companies that offer IoT services. Nowadays, the security of an IoT feature is an issue which is non-measurable in nature. Different research works are being performed to find the optimal solution to provide security of IoT. IoT requires less human commanding and controls which results in vulnerability due to hacking. In this paper, the literature is reviewed based on the types of routing attacks in wireless sensor network interface layer communication and classified the attacks that disturb the communication. These attacks are classified as attacks on topology, resources, and traffic. Based on the classification of attacks, countermeasures are suggested to protect the routing standard for the IoT environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akpakwu, G.A., et al.: A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 6: 3619–3647 (2018)

    Article  Google Scholar 

  2. Vermesan, O., et al.: Internet of things strategic research roadmap. In: Internet of Things-Global Technological and Societal Trends, vol. 1.2011, pp. 9–52 (2011)

    Google Scholar 

  3. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in the distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

    Google Scholar 

  4. Balevi, E., Al Rabee, F.T., Gitlin, R.D.: ALOHA-NOMA for massive machine-to-machine IoT communication. arXiv preprint arXiv:1803.09323 (2018)

  5. Zhou, R., et al.: File-centric multi-key aggregate keyword searchable encryption for industrial internet of things. IEEE Trans. Ind. Inf. (2018)

    Google Scholar 

  6. Silva, E.F., Muchaluat-Saade, D.C., Fernandes, N.C.: ACROSS: a generic framework for attribute-based access control with distributed policies for virtual organizations. Fut. Gener. Comput. Syst. 78: 1–17 (2018)

    Article  Google Scholar 

  7. Huotari, S., Rothstein, K.M.: Mechanism for executing server discovery. U.S. Patent No. 9,871,872, 16 Jan 2018

    Google Scholar 

  8. Kogias, D.G., et al.: Realizing the wireless technology in the Internet of Things (IoT). In: Emerging Wireless Communication and Network Technologies. Springer, Singapore, pp. 173–192 (20118)

    Chapter  Google Scholar 

  9. Jiang, Y., Huang, Z., Tsang, D.H.K.: Challenges and solutions in fog computing orchestration. IEEE Netw. 32(3): 122–129 (2018)

    Article  Google Scholar 

  10. Rao, A.P.: Adaptive control strategies for task scheduler using the Internet of Things. In: Exploring the Convergence of Big Data and the Internet of Things. IGI Global, pp. 129–140

    Google Scholar 

  11. Morabito, R., et al.: Consolidate IoT edge computing with lightweight virtualization. IEEE Net. 32(1): 102–111 (2018)

    Article  Google Scholar 

  12. Silva, B.N., Khan, M., Han, K.: Internet of things: a comprehensive review of enabling technologies, architecture, and challenges. IETE Techn. Rev. 35(2), 205–220 (2018)

    Article  Google Scholar 

  13. Restuccia, F., D’Oro, S., Melodia, T.: Securing the Internet of Things: new perspectives and research challenges. arXiv preprint arXiv:1803.05022 (2018)

  14. Wang, H., Zhang, Z., Taleb, T.: Special issue on security and privacy of IoT. World Wide Web 21(1), 1–6 (2018)

    Google Scholar 

  15. Osanaiye, O., Alfa, A.S., Hancke, G.P.: A statistical approach to detect jamming attacks in wireless sensor network. Sensors 18(6), 1691 (2018)

    Article  Google Scholar 

  16. Weekly, K., Pister, K.: Evaluating sinkhole defense techniques in RPL networks. In: 2012 20th IEEE International Conference on Network Protocols (ICNP), pp. 1092–1648, 14 Feb 2013

    Google Scholar 

  17. Gao, S., et al.: Security threats in the data plane of software-defined networks. IEEE Netw. (2018)

    Google Scholar 

  18. Feng, Y., et al.: Vulnerability of traffic control system under cyber-attacks using falsified data. Transportation Research Board 2018 Annual Meeting (TRB) (2018)

    Google Scholar 

  19. Valanarasu, M.R.: Smart and secure IoT and ai integration framework for hospital environment. J. ISMAC 1(03):172–179 (2019)

    Google Scholar 

  20. Airehrour, D., Gutierrez, J., Ray, S.K.: A trust-based defense scheme for mitigating blackhole and selective forwarding attacks in the RPL routing protocol. Aust. J. Telecommun. Dig. Econ. 6(1), 41 (2018)

    Article  Google Scholar 

  21. Tiwari, R., Saxena, T.: A review on Sybil and sinkhole of service attack in VANET. Recent Trends Electron. Commun. Syst. 5(1) 7–11 (2018)

    Google Scholar 

  22. Gill, R.K., Sachdeva, M.: Detection of hello flood attack on LEACH in wireless sensor networks. In: Next-Generation Networks, pp. 377–387 (2018)

    Google Scholar 

  23. Ghugar, U., Pradhan, J.: Intrusion detection system in wireless sensor networks for wormhole attack using trust-based system. In: Handbook of Research on Information Security in Biomedical Signal Processing. IGI Global, pp. 198–209 (2018)

    Google Scholar 

  24. Thomas, A., Gireesh Kumar, T., Mohan, A.K.: Neighbor attack detection in the internet of things. In: Advanced computational and communication paradigms. Springer, Singapore, pp. 87–196 (2018)

    Google Scholar 

  25. Yujie, Z.H.A.O., et al.: Techniques for automatically mitigating denial of service attacks via attack pattern matching. U.S. Patent No. 9,912,678. 6 Mar 2018

    Google Scholar 

  26. Singh, M.M., Mandal, J.K.: Impact of black hole attack on the reliability of mobile ad hoc network under DSDV routing protocol. Int. J. Syst. Control Commun. 9(1), 20–30 (2018)

    Google Scholar 

  27. Kelpen, K., Simo, H.: Privacy and data protection in the domain name system. Privatheit und selbstbestimmtes Leben in der digitalen Welt. Springer Vieweg, Wiesbaden, pp. 253–302 (2018)

    Chapter  Google Scholar 

  28. Azzuhri, S.R., et al.: Towards a better approach for link breaks detection and route repairs strategy in AODV protocol. Wireless Commun. Mobile Comput. (2018)

    Google Scholar 

  29. Devibala, K., et al.: Neighbor constraint traffic centric distributed sinkhole detection and mitigation approach for quality of service improvement in wireless sensor networks. In: Industry Interactive Innovations in Science, Engineering, and Technology. Springer, Singapore, pp. 357–366 (2018)

    Google Scholar 

  30. Cho, J.-H., Chen, R.: PROVEST: provenance-based trust model for delay tolerant networks. IEEE Trans. Dependable Secure Comput. 15(1), 151–165 (2018)

    Article  Google Scholar 

  31. Sharma, S., Bansal, R.K., Bansal, S.: Issues and challenges in wireless sensor networks. In: 2013 International Conference on Machine Intelligence Research and Advancement (2013)

    Google Scholar 

  32. Le, A., Loo, J., Luo, Y., Lasebae, A.: Specification-based IDS for securing RPL from topology attacks (2011)

    Google Scholar 

  33. www.postscapes.com/internet-of-things-protocols/

  34. Perrey, H., Landsmann, M., Ugus, O., Wahlisch, M., Schmidt, TC: TRAIL: topology authentication in RPL. ACM 978-1-4503-1169-4 (2016)

    Google Scholar 

  35. Raza, S., Wallgren, L., Voigt, T.: SVELTE: real-time intrusion detection in the Internet of Things. Ad Hoc Netw. (2013)

    Google Scholar 

  36. Patil, M., Biradar, R.C.: A survey on routing protocols in wireless sensor networks. 978–1-4673-4523-1/12/$31.00 ©2012. IEEE

    Google Scholar 

  37. Li, H., Lu, R., Zhou, L., et al.: An efficient Merkle-tree-based authentication scheme for smart grid (2013)

    Google Scholar 

  38. Wikipedia: Wikipedia: the free encyclopedia. Retrieved from https://www.wikipedia.org/ (2017)

  39. Thubert, P., et al.: Co-existence of a distributed routing protocol and centralized path computation for deterministic wireless networks. U.S. Patent No. 9,882,804, 30 Jan 2018

    Google Scholar 

  40. Mihovska, A., Sarkar, M.: Smart connectivity for the Internet of Things (IoT) applications. In: New Advances in the Internet of Things, pp. 105–118. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hirudhaya Mary Asha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durairaj, M., Hirudhaya Mary Asha, J. (2020). The Internet of Things (IoT) Routing Security—A Study. In: Bindhu, V., Chen, J., Tavares, J. (eds) International Conference on Communication, Computing and Electronics Systems. Lecture Notes in Electrical Engineering, vol 637. Springer, Singapore. https://doi.org/10.1007/978-981-15-2612-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2612-1_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2611-4

  • Online ISBN: 978-981-15-2612-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics