Skip to main content

Approaches for Detection of Dairy Microorganisms: An Update

  • Chapter
  • First Online:
Dairy Processing: Advanced Research to Applications

Abstract

The detection, quantification, and isolation of microbes are routine processes in the dairy industry which are advisable for monitoring food quality from an early stage. The microbiological tests can be classified into culture-dependent and culture-independent techniques. The microorganism in milk and milk products can be detected either by the conventional culture-based approach (enumeration, isolation, characterization, and identification) or through a culture-independent approach (isolation, purification of nucleic acid, and molecular identification). The culture-dependent methods are considered as the basic gold standard technique in microbial detection. The culture-dependent techniques (traditional approaches) rely on the isolation procedure from complex food matrices and the growth of microbial colonies on selective agar to detect and quantify viable microbes and identify microbes mainly depending upon their morphology and/or biochemical characteristics. The culture-independent techniques circumvent the steps of enumeration and characterization of microbes rather based on nucleic acid-based identification. In culture-independent techniques, nucleic acid (deoxyribonucleic acid (DNA)/ribonucleic acid (RNA)) is isolated and purified from the dairy matrix, and different molecular approaches are applied to identify and quantify the pathogens. This chapter gives a brief overview of the latest rapid microbiological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasian F, Ghafar-Zadeh E, Magierowski S (2018) Microbiological sensing technologies: a review. Bioengineering (Basel) 5(1):E20

    Google Scholar 

  • Adkins PR, Middleton JR, Fox LK (2016) Comparison of virulence gene identification, ribosomal spacer PCR, and pulsed-field gel electrophoresis for typing of Staphylococcus aureus strains isolated from cases of subclinical bovine mastitis in the United States. J Clin Microbiol 54(7):1871–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrimonti C, Bottari B, Sardaro ML, Marmiroli N (2019) Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products. Crit Rev Food Sci Nutr 59(3):423–442

    CAS  PubMed  Google Scholar 

  • Alhadrami HA (2018) Biosensors: classifications, medical applications, and future prospective. Biotechnol Appl Biochem 65(3):497–508

    CAS  PubMed  Google Scholar 

  • Ankireddy SR, Kim J (2019) Status and recent developments in analytical methods for the detection of foodborne microorganisms. In: Buddolla V (ed) Recent developments in applied microbiology and biochemistry. Academic Press, New York, pp 323–334

    Google Scholar 

  • Auvolat A, Besse NG (2016) The challenge of enumerating Listeria monocytogenes in food. Food Microbiol 53:135–149

    PubMed  Google Scholar 

  • Bancalari E (2017) Different methodological approaches to study lactic acid bacteria traits for their potential technological application. Doctoral dissertation, Università di Parma. Dipartimento di Scienze degli Alimenti e del Farmaco

    Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494

    CAS  PubMed  Google Scholar 

  • Bozal-Palabiyik B, Gumustas A, Ozkan SA, Uslu B (2018) Biosensor-based methods for the determination of foodborne pathogens. In: Holban AM, Grumezescu AM (eds) Foodborne diseases. Handbook of food bioengineering. Academic Press, New York, pp 379–420

    Google Scholar 

  • Bulard E, Bouchet-Spinelli A, Chaud P, Roget A, Calemczuk R, Fort S, Livache T (2015) Carbohydrates as new probes for the identification of closely related Escherichia coli strains using surface plasmon resonance imaging. Anal Chem 87(3):1804–1811

    CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    CAS  Google Scholar 

  • Buszewski B, Rogowska A, Pomastowski P, Złoch M, Railean-Plugaru V (2017) Identification of microorganisms by modern analytical techniques. J AOAC Int 100(6):1607–1623

    CAS  PubMed  Google Scholar 

  • Cancino-Padilla N, Fellenberg MA, Franco W, Ibáñez RA, Vargas-Bello-Pérez E (2017) Foodborne bacteria in dairy products: detection by molecular techniques. Cienc Investig Agraria 44(3):215–229

    Google Scholar 

  • Chabros L, Kuthan RT, Sawicka-Grzelak A, Młynarczyk G (2015) Comparison of identification methods of vancomycin-resistant enterococci in MALDI-TOF MS, Vitek 2 and API 20 STREP. Postępy Nauk Medycznych, t. XXVIII, nr 4

    Google Scholar 

  • Charbon E (2008) Towards large scale CMOS single-photon detector arrays for lab-on-chip applications. J Phys D Appl Phys 41(9):094010

    Google Scholar 

  • Chawla R, Arora JS, Dubey RK, Mukhopadhyay CS (2018) Omics approaches and applications in dairy and food processing technology. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering, vol 2: Towards improving quality of life. Academic Press, New York, pp 271–295

    Google Scholar 

  • Chifiriuc MC, Gheorghe I, Czobor I, Florea DA, Mateescu L, Caplan ME, Caplan DM, Lazar V (2017) Advances in molecular biology based assays for the rapid detection of food microbial contaminants. In: Grumezescu AM (ed) Food preservation. Nanotechnology in the agri-food industry. Academic Press, New York, pp 645–669

    Google Scholar 

  • Cocolin L, Alessandria V, Dolci P, Gorra R, Rantsiou K (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. Int J Food Microbiol 167(1):29–43

    CAS  PubMed  Google Scholar 

  • Crowley E, Bird P, Fisher K, Goetz K, Boyle M, Benzinger MJ Jr, Juenger M, Agin J, Goins D, Johnson R (2012) Evaluation of the VITEK 2 Gram-negative (GN) microbial identification test card: collaborative study. J AOAC Int 95(3):778–785

    CAS  PubMed  Google Scholar 

  • Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17

    CAS  PubMed  Google Scholar 

  • de Avila BEF, Pedrero M, Campuzano S, EscamillaGomez V, Pinagarron JM (2012) Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Anal Bioanal Chem 403:917–925

    Google Scholar 

  • Deggim-Messmer V, Bloemberg GV, Ritter C, Voit A, Hömke R, Keller PM, Böttger EC (2016) Diagnostic molecular mycobacteriology in regions with low tuberculosis endemicity: combining real-time PCR assays for detection of multiple mycobacterial pathogens with line probe assays for identification of resistance mutations. EBioMedicine 9:228–237

    PubMed  PubMed Central  Google Scholar 

  • Deng X, den Bakker HC, Hendriksen RS (2016) Genomic epidemiology: whole-genome-sequencing–powered surveillance and outbreak investigation of foodborne bacterial pathogens. Annu Rev Food Sci T 7:353–374

    Google Scholar 

  • Farrar JS, Wittwer CT (2015) Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin Chem 61(1):145–153

    PubMed  Google Scholar 

  • Fittipaldi M, Nocker A, Codony F (2012) Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods 91(2):276–289

    CAS  PubMed  Google Scholar 

  • Forghani F, Langaee T, Eskandari M, Seo KH, Chung MJ, Oh DH (2015) Rapid detection of viable Bacillus cereus emetic and enterotoxic strains in food by coupling propidium monoazide and multiplex PCR (PMA-mPCR). Food Control 55:151–157

    CAS  Google Scholar 

  • Franco-Duarte R, Cernakova L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stępien K, Leszczewicz M, Relison Tintino S (2019) Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms 7(5):130

    CAS  PubMed Central  Google Scholar 

  • Fusco V, Quero GM (2014) Culture-dependent and culture-independent nucleic-acid-based methods used in the microbial safety assessment of milk and dairy products. Compr Rev Food Sci Food Saf 13(4):493–537

    CAS  Google Scholar 

  • Gobert G, Cotillard A, Fourmestraux C, Pruvost L, Miguet J, Boyer M (2018) Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J Microbiol Methods 148:64–73

    CAS  PubMed  Google Scholar 

  • Grimont F, Grimont PA (1986) Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol 137(1):165–175. Elsevier Masson

    Google Scholar 

  • Hameed S, Xie L, Ying Y (2018) Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci Technol 81:61–73

    CAS  Google Scholar 

  • He G, Xu D, Qin H, Yang S, Xing D (2015) In vivo cell characteristic extraction and identification by photoacoustic flow cytography. Biomed Opt Express 6(10):3748–3756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbel SR, Lauzat B, von Nickisch-Rosenegk M, Kuhn M, Murugaiyan J, Wieler LH, Guenther S (2013) Species-specific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR. J Appl Microbiol 115(6):1402–1410

    CAS  PubMed  Google Scholar 

  • Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82(6):2310–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • ISO (2005a) Microbiology of food and animal feeding stuffs—polymerase chain reaction (PCR) for the detection of food-borne pathogens—performance testing for thermal cyclers. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2005b) Microbiology of food and animal feeding stuffs. Polymerase chain reaction (PCR) for the detection of food-borne pathogens. General requirements and definitions. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2006a) Microbiology of food and animal feeding stuffs—polymerase chain reaction (PCR) for the detection of food-borne pathogens—requirements for amplification and detection for qualitative methods. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2006b) Microbiology of food and animal feeding stuffs—polymerase chain reaction (PCR) for the detection of food-borne pathogens—requirements for sample preparation for qualitative detection. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2007) Microbiology of food and animal feeding stuffs—general requirements and guidance for microbiological examinations. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2011a) Microbiology of food and animal feeding stuffs—polymerase chain reaction (PCR) for the detection and quantification of food-borne pathogens—performance characteristics. International Standardization Organization, Geneva

    Google Scholar 

  • ISO (2011b) Microbiology of food and animal feeding stuffs—real-time polymerase chain reaction (PCR) for the detection of food-borne pathogens—general requirements and definitions. International Standardization Organization, Geneva

    Google Scholar 

  • Jany JL, Barbier G (2008) Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 25(7):839–848

    CAS  PubMed  Google Scholar 

  • Kaktcham PM, Kouam EM, Tientcheu ML, Temgoua JB, Wacher C, Ngoufack FZ, de Lourdes Pérez-Chabela M (2019) Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: Bacteriocin screening, characterization, and optimization in a low-cost medium. LWT 107:272–279

    CAS  Google Scholar 

  • Koop G, De Visscher A, Collar CA, Bacon DAC, Maga EA, Murray JD, Supré K, De Vliegher S, Haesebrouck F, Rowe JD, Nielen M (2012) Identification of coagulase-negative Staphylococcus species from goat milk with the API Staph identification test and with transfer RNA-intergenic spacer PCR combined with capillary electrophoresis. J Dairy Sci 95(12):7200–7205

    CAS  PubMed  Google Scholar 

  • Laczka O, Maesa JM, Godino N, del Campo J, Fougt-Hansen M, Kutter JP, Snakenborg D, Muñoz-Pascual FX, Baldrich E (2011) Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosens Bioelectron 26(8):3633–3640

    CAS  PubMed  Google Scholar 

  • Lakshmanan RS, Guntupalli R, Hu J, Petrenko VA, Barbaree JM, Chin BA (2007) Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens Actuat B Chem 126(2):544–550

    CAS  Google Scholar 

  • Lopes ATS, Maciel BM (2019) Real-time quantitative PCR as a tool for monitoring microbiological quality of food. In: Enany S (ed) Perspectives on polymerase chain reaction. IntechOpen, London. https://doi.org/10.5772/intechopen.84532

    Chapter  Google Scholar 

  • Matijasic BB, Obermajer T, Rogelj I (2010) Quantification of Lactobacillus gasseri, Enterococcus faecium and Bifidobacterium infantis in a probiotic OTC drug by real-time PCR. Food Control 21(4):419–425

    CAS  Google Scholar 

  • Meng XC, Pang R, Wang C, Wang LQ (2010) Rapid and direct quantitative detection of viable bifidobacteria in probiotic yoghurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach. J Dairy Res 77(4):498–504

    CAS  PubMed  Google Scholar 

  • Miller DM, Dudley EG, Roberts RF (2012) Development of a quantitative PCR method for monitoring strain dynamics during yoghurt manufacture. J Dairy Sci 95(9):4868–4872

    CAS  PubMed  Google Scholar 

  • Mortari A, Lorenzelli L (2014) Recent sensing technologies for pathogen detection in milk: a review. Biosens Bioelectron 60:8–21

    CAS  PubMed  Google Scholar 

  • Mortimer P, Arnold C (2001) FAFLP: last word in microbial genotyping? J Med Microbiol 50(5):393–395

    CAS  Google Scholar 

  • Muniandy S, Teh SJ, Thong KL, Thiha A, Dinshaw IJ, Lai CW, Ibrahim F, Leo BF (2019) Carbon nanomaterial-based electrochemical biosensors for foodborne bacterial detection. Crit Rev Anal Chem 49(6):510–533

    CAS  PubMed  Google Scholar 

  • Myrick JT, Pryor RJ, Palais RA, Ison SJ, Sanford L, Dwight ZL, Huuskonen JJ, Sundberg SO, Wittwer CT (2019) Integrated extreme real-time PCR and high-speed melting analysis in 52 to 87 seconds. Clin Chem 65(2):263–271

    CAS  PubMed  Google Scholar 

  • Naum M, Lampel KA (2016) DNA-based assays. In: Smithers GW (ed) Reference module in food science. https://doi.org/10.1016/b978-0-08-100596-5.00597-7

  • Ndoye B, Rasolofo EA, LaPointe G, Roy D (2011) A review of the molecular approaches to investigate the diversity and activity of cheese microbiota. Dairy Sci Technol 91(5):495

    Google Scholar 

  • Nemati M, Hamidi A, Dizaj SM, Javaherzadeh V, Lotfipour F (2016) An overview on novel microbial determination methods in pharmaceutical and food quality control. Adv Pharm Bull 6(3):301

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan DJ, Giblin L, McSweeney PLH, Sheehan JJ, Cotter PD (2013) Nucleic acid-based approaches to investigate microbial-related cheese quality defects. Front Microbiol 4:1

    PubMed  PubMed Central  Google Scholar 

  • Ogier JC, Son O, Gruss A, Tailliez P, Delacroix-Buchet A (2002) Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 68(8):3691–3701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlovic M, Mewes A, Maggipinto M, Schmidt W, Messelhäußer U, Balsliemke J, Hörmansdorfer S, Busch U, Huber I (2014) MALDI-TOF MS based identification of food-borne yeast isolates. J Microbiol Methods 106:123–128

    CAS  PubMed  Google Scholar 

  • Poghossian A, Geissler H, Schöning MJ (2019) Rapid methods and sensors for milk quality monitoring and spoilage detection. Biosens Bioelectron 140:111272

    CAS  PubMed  Google Scholar 

  • Porcellato D, Narvhus J, Skeie SB (2016) Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. J Microbiol Methods 127:1–6

    CAS  PubMed  Google Scholar 

  • Qian L, Song H, Cai W (2016) Determination of bifidobacterium and lactobacillus in breast milk of healthy women by digital PCR. Benef Microbes 7(4):559–569

    CAS  PubMed  Google Scholar 

  • Quigley L, O’Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2011) Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 150(2–3):81–94

    CAS  PubMed  Google Scholar 

  • Quigley L, O’Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2012) High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol 78(16):5717–5723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144(2):396–411

    CAS  PubMed  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol 151(3):167–177

    CAS  PubMed  Google Scholar 

  • Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215

    CAS  PubMed  Google Scholar 

  • Riyaz-Ul-Hassan S, Verma V, Qazi GN (2013) Real-time PCR-based rapid and culture-independent detection of Salmonella in dairy milk–addressing some core issues. Lett Appl Microbiol 56(4):275–282

    CAS  PubMed  Google Scholar 

  • Rosenvinge FS, Dzajic E, Knudsen E, Malig S, Andersen LB, Løvig A, Arendrup MC, Jensen TG, Gahrn-Hansen B, Kemp M (2013) Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates. Mycoses 56(3):229–235

    CAS  PubMed  Google Scholar 

  • Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl J, Laurent F, Grundmann H, Friedrich AW, ESCMID Study Group of Epidemiological Markers (ESGEM) (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18(4):20380

    CAS  PubMed  Google Scholar 

  • Saccaro DM, Hirota CY, Tamime AY, de Oliveira MN (2011) Evaluation of different selective media for enumeration of probiotic micro-organisms in combination with yogurt starter cultures in fermented milk. Afr J Microbiol Res 5(23):3901–3906

    CAS  Google Scholar 

  • Sandrin TR, Demirev PA (2018) Characterization of microbial mixtures by mass spectrometry. Mass Spectrom Rev 37(3):321–349

    CAS  PubMed  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51(5):873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shama G, Malik DJ (2013) The uses and abuses of rapid bioluminescence-based ATP assays. Int J Hyg Environ Health 216(2):115–125

    CAS  PubMed  Google Scholar 

  • Shen ZQ, Wang JF, Qiu ZG, Jin M, Wang XW, Chen ZL, Li JW, Cao FH (2011) QCM immunosensor detection of Escherichia coli O157: H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold. Biosens Bioelectron 26(7):3376–3381

    CAS  PubMed  Google Scholar 

  • Singla V, Mandal S, Anand S, Sharma Y (2018) Sugar fermentation profile of Pediococcus strains from diverse sources. Indian J Dairy Sci 71(3):317–319

    Google Scholar 

  • Soejima T, Minami J, Iwatsuki K (2012) Rapid propidium monoazide PCR assay for the exclusive detection of viable Enterobacteriaceae cells in pasteurized milk. J Dairy Sci 95(7):3634–3642

    CAS  PubMed  Google Scholar 

  • Sohier D, Pavan S, Riou A, Combrisson J, Postollec F (2014) Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 5:16

    PubMed  PubMed Central  Google Scholar 

  • Sunthornthummas S, Doi K, Rangsiruji A, Sarawaneeyaruk S, Pringsulaka O (2017) Isolation and characterization of Lactobacillus paracasei LPC and phage ΦT25 from fermented milk. Food Control 73:1353–1361

    CAS  Google Scholar 

  • Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53(5):1309–1316

    CAS  PubMed  Google Scholar 

  • Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149(1):19–27

    CAS  PubMed  Google Scholar 

  • Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5(1):25–40

    CAS  Google Scholar 

  • Vithanage NR, Yeager TR, Jadhav SR, Palombo EA, Datta N (2014) Comparison of identification systems for psychrotrophic bacteria isolated from raw bovine milk. Int J Food Microbiol 189:26–38

    CAS  PubMed  Google Scholar 

  • Waswa JW, Debroy C, Irudayaraj J (2006) Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J Food Process Eng 29(4):373–385

    Google Scholar 

  • Wei Q, Wang X, Sun D-W, Pu H (2019) Rapid detection and control of psychrotrophic microorganisms in cold storage foods: a review. Trends Food Sci Technol 86:453–464

    CAS  Google Scholar 

  • White RA, Blainey PC, Fan HC, Quake SR (2009) Digital PCR provides sensitive and absolute calibration for high throughput sequencing. BMC Genomics 10:116

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26(2):135–150

    CAS  PubMed  Google Scholar 

  • Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82(22):9254–9260

    PubMed  Google Scholar 

  • Zhao X, Lin CW, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24(3):297–312

    CAS  PubMed  Google Scholar 

  • Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW (2011) Multiplex digital PCR: breaking the one target per colour barrier of quantitative PCR. Lab Chip 11(13):2167–2174

    CAS  PubMed  Google Scholar 

  • Zolfo M, Tett A, Jousson O, Donati C, Segata N (2017) MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res 45(2):e7

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Sudhakaran V .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudhakaran V, A., Anand, S. (2020). Approaches for Detection of Dairy Microorganisms: An Update. In: Minj, J., Sudhakaran V, A., Kumari, A. (eds) Dairy Processing: Advanced Research to Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2608-4_11

Download citation

Publish with us

Policies and ethics