Skip to main content

Plant Antimicrobial Peptides: Next-Generation Bioactive Molecules for Plant Protection

  • Chapter
  • First Online:
Phyto-Microbiome in Stress Regulation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

Plants are under constant attack by diverse groups of pathogenic microorganisms but are able to survive and thrive harmoniously with these organisms. To accomplish this, they produce bioactive molecules called antimicrobial peptides (AMPs) constitutively or after receiving chemical cues and downstream processing of the signals. The AMPs are low-molecular-weight molecules with broad-spectrum activity and less cytotoxicity affecting not only pathogenic microbes but also neoplastic cells. They play an important role in the innate immunity of plants. Studies have shown that heterologous expression of AMPs in plants conferred disease resistance. In this chapter we have discussed two major families of plant AMPs, elaborating their mode of action and their use in plant protection. We have also highlighted the plant-based expression systems for AMPs in brief and addressed its application in agriculture and therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andreev YA, Korostyleva TV, Slavokhotova AA, Rogozhin EA, Utkina LL, Vassilevski AA, Grishin EV, Egorov TA, Odintsova TI (2012) Genes encoding hevein-like defense peptides in wheat: Distribution, evolution, and role in stress response. Biochimie 94:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Archer BL (1960) The proteins of Hevea brasiliensis latex. 4. Isolation and characterization of crystalline hevein. Biochem J 75:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloj B, Zilversmit DB (1977) Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol. J Biol Chem 252(5):1613–1619

    CAS  PubMed  Google Scholar 

  • Bruix M, Jimenez MA, Santoro J, Gonzalez C, Colilla FJ, Mendez E, Rico M (1993) Solution structure of gamma 1-h and gamma 1-p thionins from barley and wheat endosperm determined by 1H-NMR: A structural motif common to toxic arthropod proteins. Biochemistry 32:715–724

    Article  CAS  PubMed  Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, Lopez-Fando JJ, Garcia-Olmedo F (1993) Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3:457462

    Article  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleaveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Chassot C, Nawrath C, Metraux JP (2007) Cuticular defects lead to full immunity to a major plant pathogen. Plant J 49:972–980

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Sukumaran DK, Nilges M, Gronenborn AM (1987) Three-dimensional structure of phoratoxin in solution: combined use of nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26:1732–1745

    Article  CAS  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • De Bolle MFC, Eggermont K, Duncan RE, Osborn RW, Terras FRG, Broekaert WF (1995) Cloning and characterization of two cDNA clones encoding seed-specific anti-microbial peptides from Mirabilis jalapa L. Plant Mol Biol 28:713–721

    Article  PubMed  Google Scholar 

  • DeBolle MFC, David KMM, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1993) Cloning and characterization of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus. Plant Mol Biol 22(1187–1):190

    Google Scholar 

  • Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  PubMed  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkina EI, Shramova EI, Tagaev AA, Ovchinnikova TV (2008) A novel defensin from the lentil (Lens culinaris) seeds. Biochem Biophys Res Commun 371:860–865

    Article  CAS  PubMed  Google Scholar 

  • Franco OL (2011) Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett 585:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CM (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Gausing K (1987) Thionin genes specifically expressed in barley leaves. Planta 171:241–246

    Article  CAS  PubMed  Google Scholar 

  • Gomar J, Sodano P, Sy D, Shin DH, Lee JY, Suh SW, Marion D, Vovelle F, Ptak M (1998) Comparison of solution and crystal structures of maize nonspecific lipid transfer protein: A model for a potential in vivo lipid carrier protein. Proteins 31:160–171

    Article  CAS  PubMed  Google Scholar 

  • Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Goransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E et al (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammami R, BenHamida J, Vergoten G, Fliss I (2009) Phytamp: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:D963–D968

    Article  CAS  PubMed  Google Scholar 

  • Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585–606

    Article  CAS  PubMed  Google Scholar 

  • Heitz A, Le-Nguyen D, Chiche L (1999) Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability. Biochemistry 38:10615–10625

    Article  CAS  PubMed  Google Scholar 

  • Ireland DC, Colgrave ML, Nguyencong P, Daly NL, Craik DJ (2006) Discovery and characterization of a linear cyclotide from Viola odorata: Implications for the processing of circular proteins. J Mol Biol 357:1522–1535

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105:809–814

    Article  CAS  PubMed  Google Scholar 

  • Krisnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact 14:1255–1260

    Article  Google Scholar 

  • Lipkin A, Anisimova V, Nikonorova A, Babakov A, Krause E, Bienert M, Grishin E, Egorov T (2005) An antimicrobial peptide ar-amp from amaranth (Amaranthus retroflexus L.) seeds. Phytochemistry 66:2426–2431

    Article  CAS  PubMed  Google Scholar 

  • Mentag R, Lukevich M, Morency MJ, Seguin A (2003) Bacterial disease resistant of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    Article  CAS  PubMed  Google Scholar 

  • Nguyen GK, Zhang S, Nguyen NT, Nguyen PQ, Chiu MS, Hardjojo A, Tam JP (2011) Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J Biol Chem 286:24275–24287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oard SV, Enright FM (2006) Expression of antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Rep 25:561–572

    Article  CAS  PubMed  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS (1994) A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci 3:1833–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, Kim MC, Chung WS, Kim JC, Yoo JH et al (2002a) Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50:59–69

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Kang YH, Chun HJ (2002b) Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50:59–69

    Article  CAS  PubMed  Google Scholar 

  • Pelegrini PB, Franco OL (2005) Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37:2239–2253

    Article  CAS  PubMed  Google Scholar 

  • Ponz F, Paz-Ares J, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F (1983) Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare l.). EMBO J 2:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao AG (2015) Antimicrobial peptides. Mol Plant-Microbe Interact 8:6–13

    Article  Google Scholar 

  • Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB (2014) Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol Biotechnol 56:535–545

    Article  CAS  PubMed  Google Scholar 

  • Schaefer SC, Gasic K, Cammue B, Broekaert W, Van Damme EJM, Peumans WJ, Korban SS (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (pr) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    Article  CAS  PubMed  Google Scholar 

  • Stec B (2006) Plant thionins—the structural perspective. Cell Mol Life Sci 63:1370–1385

    Article  CAS  PubMed  Google Scholar 

  • Steinmuller K, Batschauer A, Apel K (1986) Tissue-specific and light-dependent changes of chromatin organization in barley (Hordeum vulgare). Eur J Biochem 158:519–525

    Article  CAS  PubMed  Google Scholar 

  • Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals 8:711–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37:3623–3637

    Article  CAS  PubMed  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus l.) seeds. J Biol Chem 267:15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J et al (1995) Small cysteine-rich antifungal proteins from radish: Their role in host defense. Plant Cell 7:573–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turrini A, Sbrana C, Pitto L (2004) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Pierpont WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep 12:245–264

    Article  Google Scholar 

  • Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183:258–264

    Article  PubMed  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant-Microbe Interact 12:410–418

    Article  CAS  Google Scholar 

  • Yeamn MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phazang, P., Negi, N.P., Raina, M., Kumar, D. (2020). Plant Antimicrobial Peptides: Next-Generation Bioactive Molecules for Plant Protection. In: Kumar, M., Kumar, V., Prasad, R. (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_14

Download citation

Publish with us

Policies and ethics