Skip to main content

Study on an Extreme Classification of Cost - Sensitive Classification Algorithm

  • Conference paper
  • First Online:
Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1117))

Abstract

Based on the principle of cost sensitivity, this paper takes the cost sensitivity algorithm of neural network as the classifier algorithm, by using the idea of iteration, we can find a misclassification cost which can make the misclassification number of minority class samples to be zero. And compared with the evaluation indexes of some unbalanced data classification methods when the number of classification errors of minority class is non-zero, this paper hopes to realize the assumption that the minority class in the unbalanced data set will not be misclassified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: AAAI, pp. 1288–1294 (2017)

    Google Scholar 

  2. Zakaryazad, A., Duman, E.: A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing 175, 121–131 (2016)

    Article  Google Scholar 

  3. Zhong, W., Raahemi, B., Liu, J.: Classifying peer-to-peer applications using imbalanced concept-adapting very fast decision tree on IP data stream. Peer-to-Peer Netw. Appl. 6(3), 233–246 (2013)

    Article  Google Scholar 

  4. Martin-Diaz, I., Morinigo-Sotelo, D., Duque-Perez, O., et al.: Early fault detection in induction motors using AdaBoost with imbalanced small data and optimized sampling. IEEE Trans. Ind. Appl. 53(3), 3066–3075 (2017)

    Article  Google Scholar 

  5. Pouyanfar, S., Chen, S.C.: Automatic video event detection for imbalance data using enhanced ensemble deep learning. Int. J. Semant. Comput. 11(1), 85–109 (2017)

    Article  Google Scholar 

  6. Daniels, Z.A., Metaxas, D.N.: Addressing imbalance in multi-label classification using structured hellinger forests. In: AAAI, pp. 1826–1832 (2017)

    Google Scholar 

  7. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  8. Wagner, C., Saalmann, P., Hellingrath, B.: Machine condition monitoring and fault diagnostics with imbalanced data sets based on the KDD process. IFAC-PapersOnLine 49(30), 296–301 (2016)

    Article  Google Scholar 

  9. Oquab, M., Bottou, L., Laptev, I., et al.: Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724. IEEE Computer Society (2014)

    Google Scholar 

  10. Lin, W.C., Tsai, C.F., Hu, Y.H., et al.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

    Article  Google Scholar 

  11. Zhu, T., Lin, Y., Liu, Y.: Synthetic minority oversampling technique for multiclass imbalance problems. Pattern Recogn. 72, 327–340 (2017)

    Article  Google Scholar 

  12. Li, J., Fong, S., Wong, R.K., et al.: Adaptive multi-objective swarm fusion for imbalanced data classification. Inf. Fusion 39, 1–24 (2018)

    Article  Google Scholar 

  13. Hou, X., Zhang, T., Ji, L., et al.: Combating highly imbalanced steganalysis with small training samples using feature selection. J. Vis. Commun. Image Represent. 49, 243–256 (2017)

    Article  Google Scholar 

  14. Moayedikia, A., Ong, K.L., Boo, Y.L., et al.: Feature selection for high dimensional imbalanced class data using harmony search. Eng. Appl. Artif. Intell. 57, 38–49 (2017)

    Article  Google Scholar 

  15. Zhang, Z.L., Luo, X.G., Garca, S.: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers. Appl. Soft Comput. 56(C), 357–367 (2017)

    Article  Google Scholar 

  16. Zhou, Z.H., Liu, X.Y.: On multi-classcost-sensitive learning. In: Proceedings of the 21st National Conference on Artificial Intelligence. AAAI-06, pp. 567–572 (2006)

    Google Scholar 

  17. Chaki, S., Verma, A.K., Routray, A., et al.: A One class Classifier based Framework using SVDD: Application to an Imbalanced Geological Dataset (2016). arXiv preprint arXiv:1612.01349

  18. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39(2), 539–550 (2009)

    Article  Google Scholar 

  19. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  20. Fernández, A., del Río, S., Chawla, N.V., et al.: An insight into imbalanced big data classification: outcomes and challenge. Complex Intell. Syst. 3(2), 105–120 (2017)

    Article  Google Scholar 

  21. Haixiang, G., Yijing, L., Shang, J., et al.: Learning from class-imbalanced data: Review of methods and applications. Exp. Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  22. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  23. Saitta, L. (ed.): Machine Learning - A Technological Roadmap. University of Amsterdam, The Netherland (2000)

    Google Scholar 

  24. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: Proceedings of the 13th European Conference on Artificial Intelligence, Brighton, UK, pp. 445–449 (1998)

    Google Scholar 

  25. Zhou, Z., Liu, X.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)

    Article  MathSciNet  Google Scholar 

  26. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA (1998). [http://www.ics.uci.edu/~mlearn/MLRepository.html]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, N. (2020). Study on an Extreme Classification of Cost - Sensitive Classification Algorithm. In: Atiquzzaman, M., Yen, N., Xu, Z. (eds) Big Data Analytics for Cyber-Physical System in Smart City. BDCPS 2019. Advances in Intelligent Systems and Computing, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-15-2568-1_250

Download citation

Publish with us

Policies and ethics