Skip to main content

Impacts of Climate Change on Particulate Matter (PM)

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change
  • 56 Accesses

Abstract

Climate change affects the interannual and decadal variabilities of airborne particulate matters (PM) through modifications to a variety of climate factors including solar radiation, temperature, wind speeds, precipitation, etc. The complicated responses of PM to climate change and their feedbacks within the Earth system have yet to be resolved. Here, the recent research progress is summarized for the following three points: (1) climate impacts on PM sources, (2) climate impacts on PM distributions and lifetimes, and (3) interactions between PM and climate change. First, the emissions of PM from wind erosion in deserts, vegetation wildfires, terrestrial biosphere, and oceans are of great potential to be susceptible to climate anomalies. Climate change can induce changes in both physical and biological processes in natural ecosystems that drive the production of PM or their precursors. Second, the climate-driven changes in atmospheric circulation and precipitation influence the atmospheric transport of PM and their lifetimes. Third, these changes in PM could initiate climate feedback mechanisms through direct interactions with shortwave and longwave radiation and indirect interactions with clouds, biological activities, and the cryosphere. The PM-climate feedbacks in the Arctic region may contribute to the Arctic amplification via aerosol-cloud interactions and snow/ice albedo feedbacks. Earth system models are a powerful tool to examine the sensitivity of PM emissions and global distributions to isolated or coupled climate factors and to project trends in PM under a changing climate. Process-level understanding on PM-climate feedbacks is required to improve the credibility of PM projection by models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Carslaw KS et al (2010) A review of natural aerosol interactions and feedbacks within the earth system. Atmos Chem Phys 10(4):1701–1737

    Article  Google Scholar 

  2. Cai W, Li K, Liao H, Wang H, Wu L (2017) Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat Clim Chang 7(4):257–262

    Article  Google Scholar 

  3. Kok JF, Ward DS, Mahowald NM, Evan AT (2018) Global and regional importance of the direct dust-climate feedback. Nat Commun 9(1):241

    Article  Google Scholar 

  4. Shao Y et al (2011) Dust cycle: an emerging core theme in earth system science. Aeolian Res 2(4):181–204

    Article  Google Scholar 

  5. Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Rep Prog Phys 75(10):106901

    Article  Google Scholar 

  6. Shao Y (2008) Physics and modelling of wind erosion (physics and modelling of wind erosion), 2nd edn. Springer Science & Business Media, New York

    Google Scholar 

  7. Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Caribbean: climate change implications. Science 302(5647):1024–1027

    Article  Google Scholar 

  8. Evan AT, Mukhopadhyay S (2010) African dust over the northern tropical Atlantic: 1955–2008. J Appl Meteorol Climatol 49(11):2213–2229

    Article  Google Scholar 

  9. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (Toms) Absorbing Aerosol Product. Rev. Geophys 40(1):2-1-2-31

    Article  Google Scholar 

  10. Chin M et al (2014) Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys 14(7):3657–3690

    Article  Google Scholar 

  11. Ridley DA, Heald CL, Prospero JM (2014) What controls the recent changes in African mineral dust aerosol across the Atlantic? Atmos Chem Phys 14(11):5735–5747

    Article  Google Scholar 

  12. Gillette DA, Passi R (1988) Modeling dust emission caused by wind erosion. J Geophys Res Atmos 93(D11):14233–14242

    Article  Google Scholar 

  13. Tai APK et al (2021) Impacts of climate and land cover variability and trends on springtime east Asian dust emission over 1982–2010: a modeling study. Atmos Environ 254:118348

    Article  Google Scholar 

  14. Wang C, Dong S, Evan AT, Foltz GR, Lee S-K (2012) Multidecadal Covariability of North Atlantic Sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J Clim 25(15):5404–5415

    Article  Google Scholar 

  15. Foltz GR, McPhaden MJ (2008) Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys Res Lett 35(20):L20706

    Google Scholar 

  16. Tong DQ, Wang JXL, Gill TE, Lei H, Wang B (2017) Intensified dust storm activity and Valley fever infection in the Southwestern United States. Geophys Res Lett 44(9):4304–4312

    Article  Google Scholar 

  17. Hoffman AL, Forest CE, Li W (2014) Estimating the sensitivity of regional dust sources to sea surface temperature patterns. J Geophys Res Atmos 119(17):10,160–110,174

    Article  Google Scholar 

  18. Evan AT, Flamant C, Gaetani M, Guichard F (2016) The past, present and future of African dust. Nature 531(7595):493–495

    Article  Google Scholar 

  19. Li Y, Mickley LJ, Kaplan JO (2021) Response of dust emissions in southwestern North America to 21st century trends in climate, CO2 fertilization, and land use: implications for air quality. Atmos Chem Phys 21(1):57–68

    Article  Google Scholar 

  20. Mahowald NM (2007) Anthropocene changes in desert area: sensitivity to climate model predictions. Geophys Res Lett 34:L18817

    Article  Google Scholar 

  21. Mahowald NM et al (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res Atmos 111:D10202

    Google Scholar 

  22. Mahowald N et al (2014) The size distribution of desert dust aerosols and its impact on the earth system. Aeolian Res 15:53–71

    Article  Google Scholar 

  23. Kok JF (2011) Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos Chem Phys 11(19):10149–10156

    Article  Google Scholar 

  24. Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res Atmos 109(D10):D10202

    Google Scholar 

  25. Alfaro SC (2008) Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology 93(3):157–167

    Article  Google Scholar 

  26. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15(4):955–966

    Article  Google Scholar 

  27. Williams AP et al (2019) Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7(8):892–910

    Article  Google Scholar 

  28. Abatzoglou JT, Williams AP (2016) Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci U S A 113(42):11770–11775

    Article  Google Scholar 

  29. van Oldenborgh GJ et al (2021) Attribution of the Australian bushfire risk to anthropogenic climate change. Nat Hazards Earth Syst Sci 21(3):941–960

    Article  Google Scholar 

  30. Romps DM, Seeley JT, Vollaro D, Molinari J (2014) Projected increase in lightning strikes in the United States due to global warming. Science 346(6211):851–854

    Article  Google Scholar 

  31. Jolly WM et al (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6:7537

    Article  Google Scholar 

  32. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western U.S. Forest wildfire activity. Science 313(5789):940–943

    Article  Google Scholar 

  33. Alizadeh MR et al (2021) Warming enabled upslope advance in western US forest fires. Proc Natl Acad Sci U S A 118(22):e2009717118

    Google Scholar 

  34. Bowman DMJS et al (2020) Vegetation fires in the Anthropocene. Nat Rev Earth Environ 1(10):500–515

    Article  Google Scholar 

  35. Westerling AL, Bryant BP (2008) Climate change and wildfire in California. Clim Chang 87(1):231–249

    Article  Google Scholar 

  36. Tietjen B et al (2017) Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Glob Chang Biol 23(7):2743–2754

    Article  Google Scholar 

  37. Bachelet D, Neilson RP, Lenihan JM, Drapek RJ (2001) Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4(3):164–185

    Article  Google Scholar 

  38. Guenther A et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6(11):3181–3210

    Article  Google Scholar 

  39. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the earth system. New Phytol 183(1):27–51

    Article  Google Scholar 

  40. Arneth A et al (2007) CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34(18):L18813

    Article  Google Scholar 

  41. Nolan C et al (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361(6405):920–923

    Article  Google Scholar 

  42. Hartmann H et al (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

    Article  Google Scholar 

  43. Heald CL et al (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Chang Biol 15(5):1127–1140

    Article  Google Scholar 

  44. Rinnan R et al (2020) Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. Proc Natl Acad Sci U S A 117(51):32476–32483

    Article  Google Scholar 

  45. Liao H, Chen W-T, Seinfeld JH (2006) Role of climate change in global predictions of future tropospheric ozone and aerosols. J Geophys Res Atmos 111(D12):D12304

    Google Scholar 

  46. Lin G, Penner JE, Zhou C (2016) How will SOA change in the future? Geophys Res Lett 43(4):1718–1726

    Article  Google Scholar 

  47. Heald CL et al (2008) Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J Geophys Res Atmos 113:D05211

    Article  Google Scholar 

  48. Liu J et al (2016) Efficient isoprene secondary organic aerosol formation from a non-IEPOX pathway. Environ Sci Technol 50(18):9872–9880

    Article  Google Scholar 

  49. Matsui H et al (2014) Volatility basis-set approach simulation of organic aerosol formation in East Asia: implications for anthropogenic–biogenic interaction and controllable amounts. Atmos Chem Phys 14(18):9513–9535

    Article  Google Scholar 

  50. Huffman JA et al (2013) High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys 13(13):6151–6164

    Article  Google Scholar 

  51. Rathnayake CM et al (2017) Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmos Chem Phys 17(3):2459–2475

    Article  Google Scholar 

  52. Niu M et al (2021) Influence of rainfall on fungal aerobiota in the urban atmosphere over Tianjin, China: A case study. Atmos Environ: X 12:100137

    Google Scholar 

  53. Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review. American Geophysical Union Geophysical Monograph Series, Washington DC, p 3719

    Google Scholar 

  54. Russell LM, Hawkins LN, Frossard AA, Quinn PK, Bates TS (2010) Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. Proc Natl Acad Sci 107(15):6652

    Article  Google Scholar 

  55. Ovadnevaite J et al (2012) On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J Geophys Res Atmos 117:D16201

    Article  Google Scholar 

  56. Grythe H, Ström J, Krejci R, Quinn P, Stohl A (2014) A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos Chem Phys 14(3):1277–1297

    Article  Google Scholar 

  57. Kloster S et al (2007) Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J Geophys Res Biogeo 112:G03005

    Article  Google Scholar 

  58. Bell TG et al (2013) Air–sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos Chem Phys 13(21):11073–11087

    Article  Google Scholar 

  59. Liu S et al (2021) Sea spray aerosol concentration modulated by sea surface temperature. Proc Natl Acad Sci U S A 118(9):e2020583118

    Article  Google Scholar 

  60. Salter ME, Nilsson ED, Butcher A, Bilde M (2014) On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J Geophys Res Atmos 119(14):9052–9072

    Article  Google Scholar 

  61. Forestieri SD et al (2018) Temperature and composition dependence of sea spray aerosol production. Geophys Res Lett 45(14):7218–7225

    Article  Google Scholar 

  62. O’Dowd C et al (2015) Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco? Sci Rep 5(1):14883

    Article  Google Scholar 

  63. Mayer KJ et al (2020) Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation. ACS Cent Sci 6(12):2259–2266

    Article  Google Scholar 

  64. Schwier AN et al (2015) Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study. Atmos Chem Phys 15(14):7961–7976

    Google Scholar 

  65. FSR P et al (2013) Impacts of changes in North Atlantic atmospheric circulation on particulate matter and human health in Europe. Geophys Res Lett 40(15):4074–4080

    Article  Google Scholar 

  66. Pey J, Querol X, Alastuey A, Forastiere F, Stafoggia M (2013) African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos Chem Phys 13(3):1395–1410

    Article  Google Scholar 

  67. Winiger P, Andersson A, Eckhardt S, Stohl A, Gustafsson O (2016) The sources of atmospheric black carbon at a European gateway to the Arctic. Nat Commun 7:12776

    Article  Google Scholar 

  68. Stathopoulos VK et al (2021) Large circulation patterns strongly modulate long-term variability of arctic black carbon levels and areas of origin. Geophys Res Lett 48(19):e2021GL092876

    Article  Google Scholar 

  69. Zou Y, Wang Y, Zhang Y, Koo J-H (2017) Arctic Sea ice, Eurasia snow, and extreme winter haze in China. Sci Adv 3(3):e1602751

    Article  Google Scholar 

  70. Racherla PN, Adams PJ (2006) Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J Geophys Res Atmos 111(D24):D24103

    Google Scholar 

  71. Allen RJ, Hassan T, Randles CA, Su H (2019) Enhanced land–sea warming contrast elevates aerosol pollution in a warmer world. Nat Clim Chang 9(4):300–305

    Article  Google Scholar 

  72. Thornhill G et al (2021) Climate-driven chemistry and aerosol feedbacks in CMIP6 earth system models. Atmos Chem Phys 21(2):1105–1126

    Article  Google Scholar 

  73. Sporre MK, Blichner SM, Karset IHH, Makkonen R, Berntsen TK (2019) BVOC–aerosol–climate feedbacks investigated using NorESM. Atmos Chem Phys 19(7):4763–4782

    Article  Google Scholar 

  74. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326(6114):655–661

    Article  Google Scholar 

  75. Wang S, Maltrud M, Elliott S, Cameron-Smith P, Jonko A (2018) Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry 138(1):49–68

    Article  Google Scholar 

  76. Schmale J, Zieger P, Ekman AML (2021) Aerosols in current and future Arctic climate. Nat Clim Chang 11(2):95–105

    Article  Google Scholar 

  77. Shi Y, Liu X (2019) Dust radiative effects on climate by glaciating mixed-phase clouds. Geophys Res Lett 46(11):6128–6137

    Article  Google Scholar 

  78. Gali M, Devred E, Babin M, Levasseur M (2019) Decadal increase in Arctic dimethylsulfide emission. Proc Natl Acad Sci U S A 116(39):19311–19317

    Article  Google Scholar 

  79. Kylling A, Groot Zwaaftink CD, Stohl A (2018) Mineral dust instantaneous radiative forcing in the Arctic. Geophys Res Lett 45(9):4290–4298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, M., Matsui, H. (2023). Impacts of Climate Change on Particulate Matter (PM). In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics