Skip to main content

Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing

  • Living reference work entry
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

The state of the earth’s climate is determined by the level of minor constituents with chemical reactivity and/or radiative forcing. Historically, emissions and removals on the earth’s surface or photo-chemical production and loss in atmosphere led to changes in atmospheric burden of the atmospheric species. Concentrations of greenhouse gases (GHGs) have increased significantly due to emissions driven by human activities. Globally, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have increased by 44%, 131%, and 22%, respectively, from 1850 to 2019. Other well-mixed GHGs of purely anthropogenic origin, such as chlorofluorocarbons (CFCs), have reached peak concentrations in the 1990s, and the CFC-replacements are growing fast since the mid-1990s. The balance of net incoming solar radiation and earth’s outgoing radiation had reached a quasi-steady state millions of years ago, when concentration of CO2, CH4, and N2O varied between 180–285 ppm, 340–727 ppb, and 209–293 ppb, as observed during 800ky-0 AD. However, the recent increase of well-mixed GHGs have changed this balance to a net positive radiative forcing by absorbing a greater fraction of the outgoing radiation and the energy imbalance leading to global warming. Overall, the increase in GHGs alone produced an effective radiative forcing of about 3 W m−2 during 1850–2019 with 65% contribution from CO2 alone. Metrics like global warming potential (GWP, GWP*) and global temperature change potential (GTP) are discussed to help understanding the impacts of GHGs on the global surface air temperature increase. It is discussed that the regional GHGs emissions should be managed wisely to achieve the ambitious climate goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozaki K, Reinhard CT (2021) The future lifespan of Earth’s oxygenated atmosphere. Nat Geosci 14(3):138–142

    Article  Google Scholar 

  2. Hodnebrog Ø et al (2019) Water vapour adjustments and responses differ between climate drivers. Atmos Chem Phys 19(20):12887–12899

    Article  Google Scholar 

  3. IPCC (2022) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  4. HANIEL (2015) “The four phases of the industrial revolution,” Annual report, [Online]. Available: http://haniel.unternehmensberichte.net/reports/haniel/annual/2015/gb/English/1045/the-four-phases-of-the-industrial-revolution.html. Accessed 10 Jan 2022

  5. Jones MW et al (2021) Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci Data 8(1):2

    Article  Google Scholar 

  6. Swaminathan MS (2009) “SCIENCE AND SUSTAINABLE FOOD SECURITY”. In Science and sustainable food security. Co-Published with Indian Institute of Science (IISc), Bangalore, pp 185–224

    Google Scholar 

  7. Galloway JN et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  Google Scholar 

  8. SAOD (2018) Scientific assessment of ozone depletion: 2018, global ozone research and monitoring project – report no. 58. WMO (World Meteorological Organization), Geneva

    Google Scholar 

  9. Aamaas B, Peters GP, Fuglestvedt JS (2013) Simple emission metrics for climate impacts. Earth Syst Dynam 4(1):145–170

    Article  Google Scholar 

  10. Etminan M, Myhre G, Highwood EJJ, Shine KPP (2016) Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys Res Lett 43(24):12614–12623

    Article  Google Scholar 

  11. Pennington DW et al (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739

    Article  Google Scholar 

  12. Szopa S et al (2022) Short-lived climate forcers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA/New York

    Google Scholar 

  13. Canadell JG et al (2022) Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA/New York

    Google Scholar 

  14. Smith C et al (2022) The earth’s energy budget, climate feedbacks, and climate sensitivity supplementary material. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA/New York

    Google Scholar 

  15. MacFarling Meure C et al (2006) Law dome CO 2, CH 4 and N 2 O ice core records extended to 2000 years BP. Geophys Res Lett 33(14):L14810

    Article  Google Scholar 

  16. Keeling CD (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12(2):200–203

    Article  Google Scholar 

  17. Prinn RG et al (2018) History of chemically and radiatively important atmospheric gases from the advanced global atmospheric gases experiment (AGAGE). Earth Syst Sci Data 10(2):985–1018

    Article  Google Scholar 

  18. Hall BD, Dutton GS, Elkins JW (2007) The NOAA nitrous oxide standard scale for atmospheric observations. J Geophys Res 112(D9):D09305

    Article  Google Scholar 

  19. Tanaka M, Nakazawa T, Aoki S (1983) High quality measurements of the concentration of atmospheric carbon dioxide. J Meteorol Soc Japan Ser II 61(4):678–685

    Article  Google Scholar 

  20. Zhao CL, Tans PP (2006) Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. J Geophys Res 111(D8):D08S09

    Article  Google Scholar 

  21. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24(3):241–259

    Article  Google Scholar 

  22. WDCGG (2022) The world data centre for greenhouse gases. WMO Bull

    Google Scholar 

  23. Yoshida Y et al (2013) Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos Meas Tech 6(6):1533–1547

    Article  Google Scholar 

  24. O’Dell CW et al (2018) Improved retrievals of carbon dioxide from orbiting carbon observatory-2 with the version 8 ACOS algorithm. Atmos Meas Tech 11(12):6539–6576

    Article  Google Scholar 

  25. Patra PK et al (2021) Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2. Prog Earth Planet Sci 8(1):25

    Article  Google Scholar 

  26. Lüthi D et al (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382

    Article  Google Scholar 

  27. Loulergue L et al (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453(7193):383–386

    Article  Google Scholar 

  28. Schilt A et al (2010) Atmospheric nitrous oxide during the last 140,000years. Earth Planet Sci Lett 300(1–2):33–43

    Article  Google Scholar 

  29. Patra PK, Ishizawa M, Maksyutov S, Nakazawa T, Inoue G (2005) Role of biomass burning and climate anomalies for land-atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Global Biogeochem Cycles 19:GB3005

    Article  Google Scholar 

  30. Chandra N et al (2021) Emissions from the oil and gas sectors, coal mining and ruminant farming drive methane growth over the past three decades. J Meteorol Soc Japan Ser II 99(2):309–337

    Article  Google Scholar 

  31. Patra PK et al (2022) Forward and inverse modelling of atmospheric nitrous oxide using MIROC4-atmospheric chemistry-transport model. J Meteorol Soc Japan Ser II:2022–2018

    Google Scholar 

  32. Butler JH et al (1999) A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 399(6738):749–755

    Article  Google Scholar 

  33. Montzka SA et al (1996) Decline in the tropospheric abundance of halogen from halocarbons: implications for stratospheric ozone depletion. Science (80-) 272(5266):1318–1322

    Article  Google Scholar 

  34. Chandra N, et al (2021). Estimated regional CO2 flux and uncertainty based on an ensemble of atmospheric CO2 inversions

    Google Scholar 

  35. Sander SP et al (2011) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 17. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  36. Sekiguchi M, Nakajima T (2008) A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J Quant Spectrosc Radiat Transf 109(17–18):2779–2793

    Article  Google Scholar 

  37. Crippa M et al (2020) High resolution temporal profiles in the emissions database for global atmospheric research. Sci Data 7(1):121

    Article  Google Scholar 

  38. Ito A, Inatomi M (2012) Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9(2):759–773

    Article  Google Scholar 

  39. Ghosh A et al (2015) Variations in global methane sources and sinks during 1910–2010. Atmos Chem Phys 15(5):2595–2612

    Article  Google Scholar 

  40. Saunois M et al (2020) The global methane budget 2000–2017. Earth Syst Sci Data 12(3):1561–1623

    Article  Google Scholar 

  41. Tian H et al (2020) A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586(7828):248–256

    Article  Google Scholar 

  42. Le Quéré C et al (2018) Global carbon budget 2018. Earth Syst Sci Data 10(4):2141–2194

    Article  Google Scholar 

  43. Kondo M et al (2018) Land use change and El Niño-southern oscillation drive decadal carbon balance shifts in Southeast Asia. Nat Commun 9(1):1154

    Article  Google Scholar 

  44. Liou KN (2002) An introduction to atmospheric radiation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  45. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79(10):2101–2114

    Article  Google Scholar 

  46. Forster PM et al (2022) Chapter 7: the earth’s energy budget, climate feedbacks, and climate sensitivity. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA/New York

    Google Scholar 

  47. Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25(14):2715–2718

    Article  Google Scholar 

  48. Meinshausen M et al (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13(8):3571–3605

    Article  Google Scholar 

  49. Myhre G et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA/New York

    Google Scholar 

  50. Allen MR, Fuglestvedt JS, Shine KP, Reisinger A, Pierrehumbert RT, Forster PM (2016) New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat Clim Chang 6(8):773–776

    Article  Google Scholar 

  51. Lynch J, Cain M, Pierrehumbert R, Allen M (2020) Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ Res Lett 15(4):044023

    Article  Google Scholar 

  52. Cain M, Lynch J, Allen MR, Fuglestvedt JS, Frame DJ, Macey AH (2019) Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim Atmos Sci 2(1):29

    Article  Google Scholar 

  53. Allen MR et al (2018) A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim Atmos Sci 1(1):16

    Article  Google Scholar 

  54. O’Neill BC (2000) The jury is still out on global warming potentials. Clim Chang 44:427–443

    Article  Google Scholar 

  55. Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS (2011) The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ Res Lett 6(4):044021

    Article  Google Scholar 

  56. Azar C, Johansson DJA (2012) On the relationship between metrics to compare greenhouse gases – the case of IGTP, GWP and SGTP. Earth Syst Dynam 3(2):139–147

    Article  Google Scholar 

  57. Thornhill GD et al (2021) Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmos Chem Phys 21(2):853–874

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Tadao Inoue and Dr. Naveen Chandra for helping us in making some of the illustrations. This research was performed by the Arctic Challenge for Sustainability phase II (ArCS-II; JPMXD1420318865) Projects of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Environment Research and Technology Development Fund (JPMEERF21S20800) of the Environmental Restoration and Conservation Agency of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir K. Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patra, P.K., Khatri, P. (2023). Atmospheric Mixing Ratio of Greenhouse Gases and Radiative Forcing. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics