Skip to main content

Arctic Air Pollution

Handbook of Air Quality and Climate Change

Abstract

The Arctic atmosphere is subject to a wide range of local and remote sources of air pollution, which can affect local Arctic communities, contribute to Arctic warming, and cause harm to sensitive Arctic ecosystems. Despite the remote location, the Arctic surface displays characteristic enhancement of air pollutant concentrations during winter and spring known as Arctic Haze. This haze is sourced from long-range transport of pollutants from lower latitudes. During summer, less efficient transport and more efficient pollutant removal leads to lower anthropogenic influence, but increased abundances of naturally-sourced pollutants, including smoke emissions from high latitude wildfires. Long-range transport to the Arctic follows well established pathways, which are determined by dominant meteorological features of the high latitude northern hemisphere. Although poorly constrained at present, local emissions of air pollutants also make important contributions in populated regions, particularly in winter when severe surface-based inversions cause trapping of pollutants close to the surface. Processes controlling secondary pollutant formation under cold, dark conditions are poorly understood at present, and potential novel pathways for oxidant formation and precursor oxidation are under investigation. Impacts of Arctic air pollutants on health may be exacerbated by heavy organic aerosol loadings, and poor underlying health in some local communities. The future evolution of Arctic air pollution will be tightly coupled to both environmental and socioeconomic drivers that will determine Arctic development. Projected reductions of air pollution emissions due to air quality and climate mitigation strategies at lower latitudes are likely to produce warming in the Arctic over the near-term, due to sharp reductions in cooling aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Nordenskiöld AE (1883) Baron Nordenskjöld’s Expedition to Greenland. Nature 28:37–41. https://doi.org/10.1038/028037a0

    Article  Google Scholar 

  2. Mitchell JM (1957) Visual range in the polar regions with particular reference to the Alaskan Arctic. J Atmos Terr Phys, Special Supplement 195–211

    Google Scholar 

  3. Barrie LA (1986) Arctic air pollution: an overview of current knowledge. Atmos Environ (1967) 20:643–663. https://doi.org/10.1016/0004-6981(86)90180-0

  4. Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res Atmos 111. https://doi.org/10.1029/2005JD006888

  5. AMAP (2021) AMAP Arctic climate change update 2021: key trends and impacts. AMAP

    Google Scholar 

  6. Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Processes 21:106–116. https://doi.org/10.1002/ppp.689

    Article  Google Scholar 

  7. Serreze MC, Barry RG (2014) The Arctic climate system, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Rantanen M, Karpechko AY, Lipponen A et al (2022) The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ 3:168. https://doi.org/10.1038/s43247-022-00498-3

    Article  Google Scholar 

  9. Shupe MD, Persson POG, Brooks IM et al (2013) Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmospheric Chem Phys 13:9379–9399. https://doi.org/10.5194/acp-13-9379-2013

    Article  Google Scholar 

  10. Overland JE, Guest PS (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res Oceans 96:4651–4662. https://doi.org/10.1029/90JC02264

    Article  Google Scholar 

  11. Abbatt JPD, Leaitch WR, Aliabadi AA et al (2019) Overview paper: new insights into aerosol and climate in the Arctic. Atmospheric Chem Phys 19:2527–2560. https://doi.org/10.5194/acp-19-2527-2019

    Article  Google Scholar 

  12. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9. https://doi.org/10.1111/j.1600-0870.2009.00421.x

    Article  Google Scholar 

  13. Willis MD, Leaitch WR, Abbatt JPD (2018) Processes controlling the composition and abundance of Arctic aerosol. Rev Geophys 56:621–671. https://doi.org/10.1029/2018RG000602

    Article  Google Scholar 

  14. Whaley CH, Law KS, Hjorth JL et al (2022) Arctic tropospheric ozone: assessment of current knowledge and model performance. Atmospheric Chem Phys. https://doi.org/10.5194/acp-2022-319

  15. Walker TW, Jones DBA, Parrington M et al (2012) Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic. J Geophys Res Atmos 117. https://doi.org/10.1029/2011JD016370

  16. Macdonald KM, Sharma S, Toom D et al (2017) Observations of atmospheric chemical deposition to high Arctic snow. Atmospheric Chem Phys:5775–5788. https://doi.org/10.5194/acp-17-5775-2017

  17. Ikeda K, Tanimoto H, Sugita T et al (2017) Tagged tracer simulations of black carbon in the Arctic: transport, source contributions, and budget. Atmospheric Chem Phys 17:10515–10533. https://doi.org/10.5194/acp-17-10515-2017

    Article  Google Scholar 

  18. Evangeliou N, Balkanski Y, Hao WM et al (2016) Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013). Atmospheric Chem Phys 16:7587–7604. https://doi.org/10.5194/acp-16-7587-2016

    Article  Google Scholar 

  19. Schmale J, Sharma S, Decesari S et al (2022) Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chem Phys 22:3067–3096. https://doi.org/10.5194/acp-22-3067-2022

    Article  Google Scholar 

  20. Schmale J, Arnold SR, Law KS et al (2018) Local Arctic air pollution: a neglected but serious problem. Earths Future 6:1385–1412. https://doi.org/10.1029/2018EF000952

    Article  Google Scholar 

  21. Eckhardt S, Stohl A, Beirle S et al (2003) The North Atlantic Oscillation controls air pollution transport to the Arctic. Atmospheric Chem Phys:1769–1778. https://doi.org/10.5194/acp-3-1769-2003

  22. Monks SA, Arnold SR, Chipperfield MP (2012) Evidence for El Niño–Southern Oscillation (ENSO) influence on Arctic CO interannual variability through biomass burning emissions. Geophys Res Lett 39. https://doi.org/10.1029/2012GL052512

  23. Monks SA, Arnold SR, Emmons LK et al (2015) Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmospheric Chem Phys 15:3575–3603. https://doi.org/10.5194/acp-15-3575-2015

    Article  Google Scholar 

  24. Sharma S, Andrews E, Barrie LA et al (2006) Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003. J Geophys Res Atmos 111. https://doi.org/10.1029/2005JD006581

  25. Wofsy SC, Sachse GW, Gregory GL et al (1992) Atmospheric chemistry in the Arctic and subarctic: influence of natural fires, industrial emissions, and stratospheric inputs. J Geophys Res 97:16731. https://doi.org/10.1029/92JD00622

    Article  Google Scholar 

  26. Atlas EL, Ridley BA, Cantrell CA (2003) The Tropospheric Ozone Production about the Spring Equinox (TOPSE) Experiment: introduction. J Geophys Res Atmos 108. https://doi.org/10.1029/2002JD003172

  27. Law KS, Stohl A, Quinn PK et al (2014) Arctic air pollution: new insights from POLARCAT-IPY. Bull Am Meteorol Soc 95:1873–1895. https://doi.org/10.1175/BAMS-D-13-00017.1

    Article  Google Scholar 

  28. Mölders N, Tran HNQ, Cahill CF et al (2012) Assessment of WRF/Chem PM2.5 forecasts using mobile and fixed location data from the Fairbanks, Alaska winter 2008/09 field campaign. Atmos Pollut Res 3:180–191. https://doi.org/10.5094/APR.2012.018

    Article  Google Scholar 

  29. Simpson W, Law K, Schmale J et al (2019) Alaskan Layered Pollution And Chemical Analysis (ALPACA) white paper 84

    Google Scholar 

  30. AMAP (2015) AMAP Assessment 2015: black carbon and ozone as arctic climate forcers. AMAP

    Google Scholar 

  31. Moschos V, Dzepina K, Bhattu D et al (2022) Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nat Geosci 15:196–202. https://doi.org/10.1038/s41561-021-00891-1

    Article  Google Scholar 

  32. Stohl A, Aamaas B, Amann M et al (2015) Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chem Phys 15:10529–10566. https://doi.org/10.5194/acp-15-10529-2015

    Article  Google Scholar 

  33. Creamean JM, Kirpes RM, Pratt KA et al (2018) Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmospheric Chem Phys 18:18023–18042. https://doi.org/10.5194/acp-18-18023-2018

    Article  Google Scholar 

  34. Law KS, Roiger A, Thomas JL et al (2017) Local Arctic air pollution: sources and impacts. Ambio 46:453–463. https://doi.org/10.1007/s13280-017-0962-2

    Article  Google Scholar 

  35. Huang K, Fu JS (2016) A global gas flaring black carbon emission rate dataset from 1994 to 2012. Sci Data 3:160104. https://doi.org/10.1038/sdata.2016.104

    Article  Google Scholar 

  36. Li C, Hsu NC, Sayer AM et al (2016) Satellite observation of pollutant emissions from gas flaring activities near the Arctic. Atmos Environ 133:1–11. https://doi.org/10.1016/j.atmosenv.2016.03.019

    Article  Google Scholar 

  37. Thorp T, Arnold SR, Pope RJ et al (2021) Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chem Phys 21:4677–4697. https://doi.org/10.5194/acp-21-4677-2021

    Article  Google Scholar 

  38. Winiger P, Andersson A, Eckhardt S et al (2017) Siberian Arctic black carbon sources constrained by model and observation. Proc Natl Acad Sci 114:E1054–E1061. https://doi.org/10.1073/pnas.1613401114

    Article  Google Scholar 

  39. McCarty JL, Aalto J, Paunu V-V et al (2021) Reviews and syntheses: arctic fire regimes and emissions in the 21st century. Biogeosciences 18:5053–5083. https://doi.org/10.5194/bg-18-5053-2021

    Article  Google Scholar 

  40. Palarz A, Celiński-Mysław D, Ustrnul Z (2018) Temporal and spatial variability of surface-based inversions over Europe based on ERA-Interim reanalysis. Int J Climatol 38:158–168. https://doi.org/10.1002/joc.5167

    Article  Google Scholar 

  41. Decesari S, Sowlat MH, Hasheminassab S et al (2017) Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. Atmospheric Chem Phys 17:7721–7731. https://doi.org/10.5194/acp-17-7721-2017

    Article  Google Scholar 

  42. Wang Y, Zhang Q, Jiang J et al (2014) Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models. J Geophys Res Atmos 119:10425–10440. https://doi.org/10.1002/2013JD021426

    Article  Google Scholar 

  43. Campbell JR, Battaglia M, Dingilian K et al (2022) Source and Chemistry of Hydroxymethanesulfonate (HMS) in Fairbanks, Alaska. Environ Sci Technol 56:7657–7667. https://doi.org/10.1021/acs.est.2c00410

    Article  Google Scholar 

  44. Cesler-Maloney M, Simpson WR, Miles T et al (2022) Differences in ozone and particulate matter between ground level and 20 m Aloft are frequent during wintertime surface-based temperature inversions in Fairbanks, Alaska. J Geophys Res Atmos 127:e2021JD036215. https://doi.org/10.1029/2021JD036215

    Article  Google Scholar 

  45. Slater EJ, Whalley LK, Woodward-Massey R et al (2020) Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chem Phys 20:14847–14871. https://doi.org/10.5194/acp-20-14847-2020

    Article  Google Scholar 

  46. Dyson JE, Boustead GA, Fleming LT et al (2021) Production of HONO from NO2 uptake on illuminated TiO2 aerosol particles and following the illumination of mixed TiO2/ammonium nitrate particles. Atmospheric Chem Phys 21:5755–5775. https://doi.org/10.5194/acp-21-5755-2021

    Article  Google Scholar 

  47. Wespes C, Emmons L, Edwards DP et al (2012) Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning. Atmospheric Chem Phys 12:237–259. https://doi.org/10.5194/acp-12-237-2012

    Article  Google Scholar 

  48. Acosta Navarro JC, Varma V, Riipinen I et al (2016) Amplification of Arctic warming by past air pollution reductions in Europe. Nat Geosci 9:277–281. https://doi.org/10.1038/ngeo2673

    Article  Google Scholar 

  49. Mauritsen T, Sedlar J, Tjernström M et al (2011) An Arctic CCN-limited cloud-aerosol regime. Atmospheric Chem Phys 11:165–173. https://doi.org/10.5194/acp-11-165-2011

    Article  Google Scholar 

  50. Sand M, Berntsen TK, von Salzen K et al (2016) Response of Arctic temperature to changes in emissions of short-lived climate forcers. Nat Clim Change 6:286–289. https://doi.org/10.1038/nclimate2880

    Article  Google Scholar 

  51. Rap A, Richards NAD, Forster PM et al (2015) Satellite constraint on the tropospheric ozone radiative effect. Geophys Res Lett 42:5074–5081. https://doi.org/10.1002/2015GL064037

    Article  Google Scholar 

  52. Marelle L, Raut J-C, Law KS, Duclaux O (2018) Current and future arctic aerosols and ozone from remote emissions and emerging local sources – modeled source contributions and radiative effects. J Geophys Res Atmos 123:12942–12963. https://doi.org/10.1029/2018JD028863

    Article  Google Scholar 

  53. AMAP (2022) AMAP: Arctic Monitoring and Assessment Programme, Assessment 2022: short-lived climate forcers (in press). AMAP, Oslo

    Google Scholar 

  54. Tornevi A, Andersson C, Carvalho AC et al (2021) Respiratory health effects of wildfire smoke during Summer of 2018 in the Jämtland Härjedalen Region, Sweden. Int J Environ Res Public Health 18:6987. https://doi.org/10.3390/ijerph18136987

    Article  Google Scholar 

  55. Stanaway JD, Afshin A, Gakidou E et al (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392:1923–1994. https://doi.org/10.1016/S0140-6736(18)32225-6

    Article  Google Scholar 

  56. Chen G, Guo Y, Yue X et al (2021) Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locations. Lancet Planet Health 5:e579–e587. https://doi.org/10.1016/S2542-5196(21)00200-X

    Article  Google Scholar 

  57. Hirdman D, Sodemann H, Eckhardt S et al (2010) Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chem Phys 25

    Google Scholar 

  58. von Salzen K, Whaley CH, Anenberg SC et al (2022) Clean air policies are key for successfully mitigating Arctic warming. Commun Earth Environ 3:1–11. https://doi.org/10.1038/s43247-022-00555-x

    Article  Google Scholar 

  59. Stephenson SR, Wang W, Zender CS et al (2018) Climatic responses to future trans-arctic shipping. Geophys Res Lett 45:9898–9908. https://doi.org/10.1029/2018GL078969

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve R. Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Arnold, S.R., Bozem, H., Law, K.S. (2023). Arctic Air Pollution. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Arctic Air Pollution
    Published:
    25 May 2023

    DOI: https://doi.org/10.1007/978-981-15-2527-8_19-2

  2. Original

    Arctic Air Pollution
    Published:
    06 May 2023

    DOI: https://doi.org/10.1007/978-981-15-2527-8_19-1