Skip to main content

Ecology and Evolution of Insect-Plant Interactions

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Interaction between herbivores and plants is essential for ecosystem functioning. Phytochemical variation in plants is one of the most fascinating yet bewildering properties of the natural world and has important implications for both human health and the functioning of the ecosystem. One of the key aspects of plant phytochemical research is to study the insects that feed on plants which are one of the driving forces behind the development of chemical diversity in plants. Decoding their interaction from molecular to the ecological level is important for developing a comprehensive understanding of their interaction that has shaped their evolutionary history. Applications of advanced technologies and collaborative work between molecular biologists, geneticists, ecologists, evolutionary biologists, and biochemists will unravel their complex interactions for meeting future challenges. In this chapter, we have emphasized on the ecological perspective of the two interacting system and how it has led to evolution of certain traits in them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2000) Benefits and costs of induced plant defense for Lepidium virginicum (brassicaceae). Ecology 81(7):1804–1813

    Article  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughri JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends in Plant Sci 17:293–302

    Article  CAS  Google Scholar 

  • Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia:1–10

    Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Waomar M (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT, Preston CA (1999) The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145

    Article  CAS  Google Scholar 

  • Becerra JX (2015) Macroevolutionary and geographical intensification of chemical defense in plants driven by insect herbivore selection pressure. Curr Opin Insect Sci 8:15–21

    Article  PubMed  Google Scholar 

  • Bernays EA (1981) Plant tannins and insect herbivores: an appraisal. Ecol Entomol 6:353–360

    Article  Google Scholar 

  • Bernays EA (1996) Selective attention and host-plant specialization. Entomol Exp Appl 80(1):125–131

    Article  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Bukovinszky T, Gols R, Posthumus MA, van Lenteren JC, Vet LEM (2005) Variation in plant volatiles and the attraction of the parasitoid Diadegma semiclausum (Hellen). Journal of Chem Ecol 31:461–480

    Article  CAS  Google Scholar 

  • Bukovinszky T, Gols R, Kamp A, De Oliveira-Domingues F, Hamback PA, Jongema Y, Bezemer TM, Dicke M, Van Dam NM, Harvey JA (2010) Combined effects of patch size and plant nutritional quality on local densities of insect herbivores. Basic Appl Ecol 11:396–405

    Article  Google Scholar 

  • Casal JJ, Fankhauser C, Coupland G, Blázquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9:309–314

    Article  CAS  PubMed  Google Scholar 

  • ÄŒokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  CAS  Google Scholar 

  • Coley PD (1986) Costs and benefits of defense by tannins in a neotropical plant. Oecologia 70:238–241

    Article  PubMed  Google Scholar 

  • Cook JM, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248

    Article  Google Scholar 

  • Das A, Lee S, Hyun TK, Kim S, Kim J (2012) Plant volatiles as method of communication. Plant Biotechnol Rep 7:9–26

    Article  Google Scholar 

  • de Brito FR, Martinoia E (2018) The vacuolar transportome of plant specialized metabolites. Plant Cell Physiol 59(7):1326–1336. https://doi.org/10.1093/pcp/pcy039

    Article  CAS  Google Scholar 

  • de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev in Plant Sci 20(5):487–521

    Article  Google Scholar 

  • Dicke M (1999) Evolution of induced indirect defense of plants. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 62–88

    Chapter  Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 37:237–249

    Article  Google Scholar 

  • Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Feeny PP (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J Insect Physiol 14:805–817

    Article  CAS  Google Scholar 

  • Fontaine C, Thébault E, Dajoz I (2009) Are insect pollinators more generalist than insect herbivores? Proceed Royal Soc B Biol Sci 276:3027–3033

    Google Scholar 

  • Fraenkel GS (1959) The Raison d’Être of secondary plant substances. Science 129:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche-Hoballah ME, Tamo C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J Chem Ecol 28:951–968

    Article  Google Scholar 

  • Futuyma DJ (2000) Some current approaches to the evolution of plant-herbivore interactions. Plant Species Biol 15:1–9

    Article  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Futuyma DJ, Slatkin M (1983) Introduction. In: Futuyma DJ, Slatkin M (eds) Coevolution Sinauer Associates, Sunderland, pp 1–13.

    Google Scholar 

  • Gall LF (1987) Leaflet position influences caterpillar feeding and development. Oikos 49:172–176

    Article  Google Scholar 

  • Garrouste R, Clement G, Nel P, Engel MS, Grandcolas P, D’Haese C, Lagebro L, Denayer J, Gueriau P, Lafaite P, Olive S, Prestianni C, Nel A (2012) A complete insect from the Late Devonian period. Nature 488:82–86

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Liu P, Yang R, Zhang L, Chen H, Camara I, Liu Y, Wangpeng S (2015) Insecticidal Constituents and Activity of Alkaloids from Cynanchum mongolicum. Molecules 20:17483–17492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–1328

    Article  CAS  PubMed  Google Scholar 

  • Gols R, Bukovinszky T, Van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouinguene SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129:1296–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutbrodt B, Modv K, Dorn S (2011) Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120(11):1732–1740

    Article  CAS  Google Scholar 

  • Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT (2000) Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417

    Article  CAS  PubMed  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in antiherbivore defense. Perspec. Plant Ecol Evol Syst 8:157–178. https://doi.org/10.1016/j.ppees.2007.01.001

    Article  Google Scholar 

  • Harvey PH, Pagel M (1991) The Comparative Method In Evolutionary Biology. Oxford Ser Ecol Evol 1:248

    Google Scholar 

  • Heil M (2004) Direct defense or ecological costs: Responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J Chem Ecol 30:1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  PubMed  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    Article  CAS  PubMed  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700. https://doi.org/10.1104/pp.125.2.683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herre EA, Machado CA, Bermingham E, Nason JD, Windsor DM, McCafferty SS, van Houten W, Bachmann K (1996) Molecular Phylogenies of Figs and Their Pollinator Wasps. J Biogeogr 23:521–530

    Article  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Ann Rev Entomol 54:58–73

    Article  CAS  Google Scholar 

  • Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochem 72:1531–1537

    Article  CAS  Google Scholar 

  • Hui D, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. V: Microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiol 131:1877–1893. https://doi.org/10.1104/pp.102.018176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34(3):611–612

    Article  PubMed  Google Scholar 

  • Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138. PMID:15291486. https://doi.org/10.1021/jf0308049.

  • Johnson MTJ, Smith SD, Rausher MD (2009) Plant sex and the evolution of plant defenses against herbivores. Proc Natl Acad Sci U S A 106:18079–18084.; PMID:19617572. https://doi.org/10.1073/pnas.0904695106

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. Chicago University Press, Chicago, 319 pp

    Book  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Kerogoat GJ, Meseguer AS, Jousselin E (2017) Evolution of plant-insect interaction: Insights from evolutionary approaches in plant and herbivorous insects. Adv Bot Res 81:25–53

    Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer TW, Potter DA (1987) Nutritional quality of specific leaf tissues and selective feeding by a specialist leafminer. Oecologia 71:548–551

    Article  CAS  PubMed  Google Scholar 

  • Korth KL (2003) Profiling the response of plants to herbivorous insects. Genome Biol 4(7):221

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 67(2):597–606

    Article  CAS  Google Scholar 

  • Lucas-Barbosa D, van Loon JJA, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochem 72:1647–1654

    Article  CAS  Google Scholar 

  • Mello MO, Silva-Filho MC (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol 14(2):71–81

    Article  CAS  Google Scholar 

  • Mescher MC, de Moraes CM (2015) Role of plant sensory perception in plant-animal interactions. J Exp Bot 66(2):425–433. https://doi.org/10.1093/jxb/eru414. Epub 2014 Nov 4

    Article  CAS  PubMed  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on Lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitter C, Farell BD, Futuyma DJ (1991) Phylogenetic Studies of Insect-Plant Interactions Insights into the Genesis of Diversity. Trends Ecol Evol 6(9):290–293

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Posthumus MA, Dicke M (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Env 31:575–585

    Article  CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162(7):743–748

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584(14):2965–2973

    Article  CAS  PubMed  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • Ohgushi T (2008) Herbivore-induced indirect interaction webs on terrestrial plants: the importance of non-trophic, indirect, and facilitative interactions. Entomol Exp Appl 128:217–229

    Article  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    Article  CAS  PubMed  Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CAB International, Wallingford

    Google Scholar 

  • Pare PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5:220–225

    Article  CAS  PubMed  Google Scholar 

  • Pecetti L, Biazzi E, Tava A (2010) Variation in saponin content during the growing season of spotted medic Medicago arabica (L.) Huds. J Sci Food Agric 90:2405–2410

    Article  CAS  PubMed  Google Scholar 

  • Picersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566

    Article  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1997) Insect ecology, 3rd edn. Wiley, New York

    Google Scholar 

  • Purrington CB (2000) Costs of resistance. Curr Opin Plant Biol 3(4):305–308

    Article  CAS  PubMed  Google Scholar 

  • Randlkofer B, Obermaier E, Hilker M, Meiners T (2010) Vegetation complexity – the influence of plant species diversity and plant structure on plant chemical complexity and arthropods. Basic Appl Ecol 11(5):383–395

    Article  CAS  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 61:880–887

    Article  PubMed  Google Scholar 

  • Reynolds OL, Keeoing MG, Meyer JH (2009) Silicon-augmented resistance of plants to herbivorous insects: a review. Ann Appl Biol 155:171–186

    Article  CAS  Google Scholar 

  • Runyon JB, Mescher MC, Felton GW, de Moraes CM (2010) Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ 33:290–303

    Article  CAS  PubMed  Google Scholar 

  • Saunders JA, O’Neill NR, Romeo JT (1992) Alkaloid chemistry and feeding specificity of insect herbivores. In: Pelletier SW (ed) Alkaloids: chemical and biological perspective. Springer, New York, pp 151–196

    Google Scholar 

  • Saxena KN (1969) Patterns of insect-plant relationships determining susceptibility or resistance of different plants to an insect. Entomol Exp Appl 12:751–766

    Article  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Nat Acad Sci USA 103:8894–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Schulz JC (1988) Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology 69(4):896–897

    Article  Google Scholar 

  • Scott JG, Wen ZM (2001) Cytochromes P450 of insects: he tip of the iceberg. Pest Manag Sci 57:958–967

    Article  CAS  PubMed  Google Scholar 

  • Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Ann Rev Entomol 26:183–211

    Article  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 25(4):2001–2006

    Article  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod Plant Interact 3:151–161. https://doi.org/10.1007/s11829-009-9068-5

  • Shields VDC, Smith KP, Arnold NS, Gordon IM, Shaw TE, Warancjh D (2008) The effect of varying alkaloid concentrations on the feeding behavior of gypsy moth larvae, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Arthropod Plant Interact 2(2):101–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmonds MSJ, Blaney WM, Fellows LE (1990) Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxyalkaloids. J Chem Ecol 16:3167–3196. https://doi.org/10.1007/BF00979618.

  • Stam JM, Kroes A, Li Y, Gols R, van Loon JJ, Poelman EH, Dicke M (2014) Plant interactions with multiple insect herbivores: from community to genes. Annu Rev Plant Biol 65:689–713

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (1999) Specific hypothesis on the geographic mosaic of coevolution. Am Nat 153(Suppl):S1–S14

    Google Scholar 

  • Tissier A, Ziegler J, Vogt T (2014) Specialized plant metabolites: diversity and biosynthesis. In: Krauss, G-J, Nies DH (eds) Ecological biochemistry: environmental and interspecies interactions, 1. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Truitt CL, Paré PW (2004) In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta 218:999. https://doi.org/10.1007/s00425-003-1173-6

    Article  CAS  PubMed  Google Scholar 

  • Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habitats: possible consequences for their natural enemies. Biol Control 11:122–129

    Article  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  CAS  PubMed  Google Scholar 

  • Wanntorp HE, Brooks DR, Nilsson R, Nylin E, Ronfquist F, Steams SC, Wedell N (1990) Phylogenetic approaches in ecology. Oikos 57:119–132

    Article  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinhold A, Baldwin IT (2011) Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proc Nat Acad Sci USA 108:7855–7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nature Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:1–8

    Article  Google Scholar 

  • Zangerl AR (1990) Furanocoumarin induction in wild parsnip: evidence for an induced defense against herbivores. Ecology 71(5):1926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Singha Naorem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naorem, A.S., Karthi, S. (2021). Ecology and Evolution of Insect-Plant Interactions. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_18

Download citation

Publish with us

Policies and ethics