Skip to main content

Appraisal of Breast Ultrasound Image Using Shannon’s Thresholding and Level-Set Segmentation

  • Conference paper
  • First Online:
Progress in Computing, Analytics and Networking

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1119))

Abstract

As per the statement of the World Health Organization (WHO), breast malignancy is one of the major impacting cancers among women. The availability of the modern disease diagnostic systems and treatment procedure will assist to improve the survival rate. Even though considerable modalities are available to record the breast abnormality, ultrasound imaging technique is frequently used in clinics to record the abnormalities. This study aims to propose a computer-assisted procedure to examine the Breast Ultrasound Image (BUI). The proposed work implements an integration of Shannon’s Entropy Thresholding (SET) to improve the visibility of the image and Level-Set Segmentation (LSS) to extort the abnormal division. The proposed scheme is a semiautomated approach, which aims to mine the suspicious section from the BUI. The extracted suspicious segment is then compared against a ground truth and the essential performance measures are computed to justify the performance of LSS. The overall performance of LSS is then compared and validated with other methods, such as active-contour (AC) and Chan–Vese (CV) and the results of this study confirmed that performance measures attained with LSS, AC, and CV are roughly similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.who.int/health-topics/cancer

  2. http://www.onlinemedicalimages.com/index.php/en/

  3. Nair, M.V., et al.: Investigation of breast melanoma using hybrid image-processing-tool. In: International Conference on Recent Trends in Advance Computing (ICRTAC), pp. 174–179. IEEE (2018). https://doi.org/10.1109/ICRTAC.2018.8679193

  4. Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019). https://doi.org/10.1109/MCE.2019.2923926

    Article  Google Scholar 

  5. Rajinikanth, V., et al.: Thermogram assisted detection and analysis of ductal carcinoma in situ (DCIS). In: International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp. 1641–1646. IEEE (2018). https://doi.org/10.1109/ICICICT1.2017.8342817

  6. Keatmanee, C., Chaumrattanakul, U., Kotani, K., Makhanov, S.S.: Initialization of active contours for segmentation of breast cancer via fusion of ultrasound, Doppler, and elasticity images. Ultrasonics 94, 438–453 (2019). https://doi.org/10.1016/j.ultras.2017.12.008

    Article  Google Scholar 

  7. Rodtook, A., Kirimasthong, K., Lohitvisate, W., Makhanov, S.S.: Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities. Pattern Recogn. 79, 172–182 (2018)

    Article  Google Scholar 

  8. Kirimasthong, K., Rodtook, A., Chaumrattanakul, U., Makhanov, S.S.: Phase portrait analysis for automatic initialization of multiple snakes for segmentation of the ultrasound images of breast cancer. Pattern Anal. Appl. 20, 239–251 (2017)

    Article  MathSciNet  Google Scholar 

  9. Rodtook, A., Makhanov, S.S.: Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J. Visual Commun. Image Represent. 24(8), 1414–1430 (2013)

    Article  Google Scholar 

  10. Chucherd, S., Makhanov, S.S.: Sparse phase portrait analysis for preprocessing and segmentation of ultrasound images of breast cancer. IAENG Int. J. Comput. Sci. 38(2), 146–159 (2011)

    Google Scholar 

  11. Raja, N.S.M., et al.: Segmentation of breast thermal images using Kapur’s entropy and Hidden Markov random field. J. Med. Imaging Health Inform. 7(8), 1825–1829 (2017). https://doi.org/10.1166/jmihi.2017.2267

    Article  Google Scholar 

  12. Rajinikanth, V., Dey, N., Kumar, R., Panneerselvam, J., Raja, N.S.M.: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation. Procedia Comput. Sci. 152, 66–73 (2019). https://doi.org/10.1016/j.procs.2019.05.028

    Article  Google Scholar 

  13. Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018). https://doi.org/10.1155/2018/3738049

    Article  MATH  Google Scholar 

  14. Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab. J. Sci. Eng. 43(8), 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

    Article  Google Scholar 

  15. Raja, N.S.M., et al.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient Intell. Humaniz. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  16. Dey, N., et al.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  17. Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  18. Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images—A study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019). https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  19. Dey, N., et al.: Social-group-optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019). https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  20. Fernandes, S.L., et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019). https://doi.org/10.1007/s00521-019-04369-5

  21. http://www.itksnap.org/pmwiki/pmwiki.php

  22. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  23. Rajinikanth, V., Lin, H., Panneerselvam, J., Raja, N.S.M.: Examination of retinal anatomical structures—A study with spider monkey optimization algorithm. In: Applied Nature-Inspired Computing: algorithms and Case Studies, pp. 177–197 (2020). https://doi.org/10.1007/978-981-13-9263-4_8

  24. Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K.: Inspection of crop-weed image database using Kapur’s entropy and Spider monkey optimization. In: Advances in Intelligent Systems and Computing, p. 1048 (2019). https://doi.org/10.1007/978-981-15-0035-0_32

  25. Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for208 numerical optimization. Memetic Comput. 6(1), 31–47 (2014)

    Article  Google Scholar 

  26. Kannappan, P.L.: On Shannon’s entropy directed divergence and inaccuracy. Probab. Theory Rel. Fields 22, 95–100 (1972)

    MathSciNet  MATH  Google Scholar 

  27. Chen, Y., Chen, G., Wang, Y., Dey, N., Sherratt, R.S., Shi, F.: A distance regularized level-set evolution model based MRI dataset segmentation of brain’s caudate nucleus. IEEE Access 7, 124128–124140 (2019)

    Article  Google Scholar 

  28. Chandrakar, P.: A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. Int. J. Ambient Comput. Intell. (IJACI) 10(1), 96–116 (2019). https://doi.org/10.4018/IJACI.2019010106

    Article  Google Scholar 

  29. Bhattacharya, H., Chattopadhyay, S., Chattopadhyay, M., Banerjee, A.: Storage and bandwidth optimized reliable distributed data allocation algorithm. J. Ambient Comput. Intell. (IJACI) 10(1), 78–95 (2019). https://doi.org/10.4018/IJACI.2019010105

    Article  Google Scholar 

  30. Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (dmd): a data mining (DM) approach. Adv. Intell. Syst. Comput. 710, 539–549 (2018). https://doi.org/10.1007/978-981-10-7871-2_52

    Article  Google Scholar 

  31. Sahani, R., et al.: Classification of intrusion detection using data mining techniques. Adv. Intell. Syst. Comput. 710, 753–764 (2018). https://doi.org/10.1007/978-981-10-7871-2_72

    Article  Google Scholar 

  32. Pradhan, C., Das, H., Naik, B., Dey, N.: Handbook of Research on Information Security in Biomedical Signal Processing Hershey. IGI Global, PA (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ifan Roy Thanaraj, R., Anand, B., Allen Rahul, J., Rajinikanth, V. (2020). Appraisal of Breast Ultrasound Image Using Shannon’s Thresholding and Level-Set Segmentation. In: Das, H., Pattnaik, P., Rautaray, S., Li, KC. (eds) Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing, vol 1119. Springer, Singapore. https://doi.org/10.1007/978-981-15-2414-1_62

Download citation

Publish with us

Policies and ethics