Skip to main content

An Approach to Extract Low-Grade Tumor from Brain MRI Slice Using Soft-Computing Scheme

  • Conference paper
  • First Online:
Progress in Computing, Analytics and Networking

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1119))

Abstract

The clinical-level assessment of brain Magnetic Resonance Imaging (MRI) varies from the visual/physical examination by a doctor to the Computer-Assisted Evaluation (CAE). Owing to its impact, a number of CAE techniques are planned to assess the brain MRI registered using different modalities. The plan of this research is to build a CAE tool by integrating the thresholding and segmentation techniques, which can effectively work with a range of MRI modalities. This work employs Brain Storm Optimization Algorithm (BSOA) and Otsu’s thresholding and Watershed Segmentation (WS) to extract the tumor section from the considered two-dimensional (2D) MRI slice. The proposed CAE system is tested and validated using the benchmark MRI slices of BRATS2015 database. The examination considered the low-grade tumors of the flair, T1C and T2 modality registered pictures, and its outcome is confirmed with a qualified scrutiny with the Ground Truth (GT) given by an expert. The result of this work substantiates that this CAE tool offered superior values of Image Quality Parameters (IQPs) during the low-grade brain tumor evaluation, and hence, the developed CAE can be considered to inspect the scientific grade MRI slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S.: Entropy based Segmentation of Tumor from Brain MR Images–A study with Teaching Learning Based Optimization. Pattern Recognit. Lett. 94, 87–94 (2016). https://doi.org/10.1016/j.patrec.2017.05.028

  2. Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019). https://doi.org/10.1109/MCE.2019.2923926

    Article  Google Scholar 

  3. Nair. M.V. et al.: Investigation of breast melanoma using hybrid image-processing-tool. In: International Conference on Recent Trends in Advance Computing (ICRTAC), IEEE, pp. 174–179 (2018). https://doi.org/10.1109/ICRTAC.2018.8679193

  4. Rajinikanth, V., Dey, N., Kumar, R., Panneerselvam, J., Raja, N.S.M.: Fetal head periphery extraction from ultrasound image using jaya algorithm and Chan-Vese segmentation. Procedia Comput. Sci. 152, 66–73 (2019). https://doi.org/10.1016/j.procs.2019.05.028

    Article  Google Scholar 

  5. Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 12 (2018). https://doi.org/10.1155/2018/3738049

    Article  MATH  Google Scholar 

  6. Rajinikanth, V., Satapathy, S.C.: Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arabian J. Sci. Eng. 43(8), 4365–4378 (2018). https://doi.org/10.1007/s13369-017-3053-6

    Article  Google Scholar 

  7. Jahmunah, V., et al.: Automated detection of schizophrenia using nonlinear signal processing methods. Artif. Intell. Med. 100, 101698 (2019). https://doi.org/10.1016/j.artmed.2019.07.006

    Article  Google Scholar 

  8. Acharya, U.R., et al.: Automated detection of Alzheimer’s disease using brain MRI images– a study with various feature extraction techniques. J. Med. Syst. 43, 302 (2019). https://doi.org/10.1007/s10916-019-1428-9

    Article  Google Scholar 

  9. Dey, N., et al.: Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality. Biocybern. Biomed. Eng. 39(3), 843–856 (2019). https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  10. Fernandes, S.L. et al.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 1–12 (2019). https://doi.org/10.1007/s00521-019-04369-5

  11. Menze, et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  12. Brain Tumor Database (BraTS-MICCAI), http://hal.inria.fr/hal-00935640

  13. Satapathy, S.C., Raja, N.S.M., Rajinikanth, V., Ashour, A.S. Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-016-2645-5

  14. Raja, NSM., Rajinikanth, V., Latha, K.: Otsu based optimal multilevel image thresholding using firefly algorithm. Model Simul. Eng. 2014 (2014). Article ID 794574:17

    Google Scholar 

  15. Shi, Y.: Brain storm optimization algorithm. Lect. Notes Comput. Sci. 6728, 303–309 (2011). https://doi.org/10.1007/978-3-642-21515-5_36

    Article  Google Scholar 

  16. Cheng, S., Shi, Y., Qin, Q., Zhang, Q., Bai, R.: Population diversity maintenance in brain storm optimization algorithm. J Artif Intell Soft Comput Res 4(2), 83–97 (2014)

    Article  Google Scholar 

  17. Cheng, S., Qin, Q., Chen, J., Shi, Y.: Brain storm optimization algorithm: a review. Artif. Intell. Rev. 46(4), 445–458 (2016)

    Article  Google Scholar 

  18. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundam. Inf. 41, 187–228 (2001)

    Article  MathSciNet  Google Scholar 

  19. Shanthakumar, P., Kumar, P.G.: Computer aided brain tumor detection system using watershed segmentation techniques. Int. J. Imaging Syst. Technol. 25(4), 297–301 (2015). https://doi.org/10.1002/ima.22147

    Article  Google Scholar 

  20. Raja, N.S.M. et al.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient Intell. Hum. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  21. Dey, N., et al.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  22. Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K.: Inspection of crop-weed image database using kapur’s entropy and spider monkey optimization. Adv. Intell. Syst. Comput. 1048 (2019). https://doi.org/10.1007/978-981-15-0035-0_32

  23. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)

    Google Scholar 

  24. Raja, N.S.M., et al.: Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J. Med. Imaging Health Inf. 7(8), 1825–1829 (2017). https://doi.org/10.1166/jmihi.2017.2267

    Article  Google Scholar 

  25. Das, H., Naik, B., Behera, H.S.: Classification of diabetes mellitus disease (dmd): a data mining (DM) Approach. Adv. Intell. Syst. Comput. 710, 539–549 (2018). https://doi.org/10.1007/978-981-10-7871-2_52

    Article  Google Scholar 

  26. Sahani, R., et al.: Classification of intrusion detection using data mining techniques. Adv. Intell. Syst. Comput. 710, 753–764 (2018). https://doi.org/10.1007/978-981-10-7871-2_72

    Article  Google Scholar 

  27. Pradhan, C., Das, H., Naik, B., Dey, N.: Handbook of Research on Information Security in Biomedical Signal Processing Hershey. IGI Global, PA (2018)

    Book  Google Scholar 

  28. Sahoo, A.K., Mallik, S., Pradhan, C., Mishra, B.S.P., Barik, R.K., Das, H.: Intelligence-based health recommendation system using big data analytics. In: Big Data Analytics for Intelligent Healthcare Management, pp. 227–246 (2019). https://doi.org/10.1016/B978-0-12-818146-1.00009-X

  29. Dey, N., Das, H., Naik, B., Behera, H.S. (eds.): Big Data Analytics for Intelligent Healthcare Management. Academic (2019)

    Google Scholar 

  30. Chandrakar, P.: A secure remote user authentication protocol for healthcare monitoring using wireless medical sensor networks. Int. J. Ambient Comput. Intell. (IJACI) 10(1), 96–116 (2019). https://doi.org/10.4018/IJACI.2019010106

    Article  Google Scholar 

  31. Bhattacharya, H., Chattopadhyay, S., Chattopadhyay, M., Banerjee, A.: Storage and bandwidth optimized reliable distributed data allocation algorithm. J. Ambient Comput. Intell. (IJACI) 10(1), 78–95 (2019). https://doi.org/10.4018/IJACI.2019010105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinnarasi, S.F., Rose, J.T.A., Jesline, Rajinikanth, V. (2020). An Approach to Extract Low-Grade Tumor from Brain MRI Slice Using Soft-Computing Scheme. In: Das, H., Pattnaik, P., Rautaray, S., Li, KC. (eds) Progress in Computing, Analytics and Networking. Advances in Intelligent Systems and Computing, vol 1119. Springer, Singapore. https://doi.org/10.1007/978-981-15-2414-1_28

Download citation

Publish with us

Policies and ethics