Skip to main content

Gut Microbiota and Liver Injury (I)—Acute Liver Injury

  • Chapter
  • First Online:
Gut Microbiota and Pathogenesis of Organ Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1238))

Abstract

Over the last few decades, intestinal microbial communities have been considered to play a vital role in host liver health. Acute liver injury (ALI) is the manifestation of sudden hepatic injury and arises from a variety of causes. The studies of dysbiosis in gut microbiota provide new insight into the pathogenesis of ALI. However, the relationship of gut microbiota and ALI is not well understood, and the contribution of gut microbiota to ALI has not been well characterized. In this chapter, we integrate several major pathogenic factors in ALI with the role of gut microbiota to stress the significance of gut microbiota in prevention and treatment of ALI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal WAG, Dhawan A, Wendon J (2010) Acute liver failure. Lancet 376(9736):190–201

    Article  PubMed  Google Scholar 

  2. Chassaing B, Etienne-Mesmin L, Gewirtz AT (2014) Microbiota-liver axis in hepatic disease. Hepatology 59(1):328–339

    Article  CAS  PubMed  Google Scholar 

  3. Boursier J, Mueller O, Barret M (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63(3):764–775

    Google Scholar 

  4. Davern TJ, Chalasani N, Fontana RJ et al (2011) Acute hepatitis E infection accounts for some cases of suspected drug-induced liver injury. Gastroenterology 141(5):1665–1672

    Google Scholar 

  5. Lee WM (2013) Drug-induced acute liver failure. Clin Liver Dis 17(4):575–586

    Google Scholar 

  6. Goldberg DS, Forde KA, Carbonari DM et al (2015) Population-representative incidence of drug-induced acute liver failure based on an analysis of an integrated health care system. Gastroenterology 148(7):1353–1361

    Google Scholar 

  7. Kullak-Ublick GA, Andrade RJ, Merz M et al (2017) Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66(6):1154–1164

    Article  CAS  PubMed  Google Scholar 

  8. Medina-Caliz I, Robles-Diaz M, Garcia-Munoz B et al (2016) Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. J Hepatol 65(3):532–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Graham DJ, Green L, Senior JR et al (2003) Troglitazone-induced liver failure: a case study. Am J Med 114(4):299–306

    Article  PubMed  Google Scholar 

  10. Yip LY, Aw CC, Lee SH (2018) The liver-gut microbiota axis modulates hepatotoxicity of Tacrine in the rat. Hepatology 67:282–295

    Article  CAS  PubMed  Google Scholar 

  11. Kummen M, Holm K, Anmarkrud JA et al (2017) The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 66(4):611–619

    Article  PubMed  Google Scholar 

  12. Davidson DG, Eastham WN (1966) Acute liver necrosis following overdose of paracetamol. Br Med J 2(5512):497–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, Harris SC (2006) Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA 5;296(1):87–93

    Google Scholar 

  14. Ioannides SJ, Siebers R, Perrin K et al (2015) The effect of 1 g of acetaminophen twice daily for 12 weeks on alanine transaminase levels–a randomized placebo-controlled trial. Clin Biochem 48(10–11):713–715

    Article  CAS  PubMed  Google Scholar 

  15. Lewis DF (2004) 57 varieties: the human cytochromes P450. Pharmacogenomics 5(3):305–318

    Article  CAS  PubMed  Google Scholar 

  16. Zanger UM, Turpeinen M, Klein K et al (2008) Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392(6):1093–1108

    Article  CAS  PubMed  Google Scholar 

  17. Laine JE, Auriola S, Pasanen M et al (2009) Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica 39(1):11–21

    Article  CAS  PubMed  Google Scholar 

  18. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30(9):2174–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGill MR, Sharpe MR, Williams CD et al (2012) The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest 122(4):1574–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee SH, An JH, Lee HJ et al (2012) Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm Drug Dispos 33(6):292–303

    Article  CAS  PubMed  Google Scholar 

  21. Bone E, Tamm A, Hill M (1976) The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am J Clin Nutr 29(12):1448–1454

    Article  CAS  PubMed  Google Scholar 

  22. Clayton TA, Baker D, Lindon JC et al (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A 106(34):14728–14733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HWCM, Bae EA, Kim DH (2003) β-Glucuronidase inhibitor tectorigenin isolated from the flower of Pueraria thunbergiana protects carbon tetrachloride-induced liver injury. Liver Int 23:221–226

    Article  CAS  PubMed  Google Scholar 

  24. Kakan X, Chen P, Zhang J (2011) Clock gene mPer2 functions in diurnal variation of acetaminophen induced hepatotoxicity in mice. Exp Toxicol Pathol 63(6):581–585

    Article  CAS  PubMed  Google Scholar 

  25. Kim YC, Lee SJ (1998) Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice. Toxicology 128(1):53–61

    Article  CAS  PubMed  Google Scholar 

  26. Johnson BP, Walisser JA, Liu Y et al (2014) Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc Natl Acad Sci U S A 111(52):18757–18762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thaiss CA, Zeevi D, Levy M et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  28. Thaiss CA, Levy M, Korem T et al (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167(6):1495–1510

    Google Scholar 

  29. Gong S, Lan T, Zeng L et al (2018) Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol 69(1):51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hervert-Hernández D, Goñi I (2011) dietary polyphenols and human gut microbiota: a review. Food Rev Int 27(2):154–169

    Article  CAS  Google Scholar 

  31. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883

    Google Scholar 

  32. Bowey E, Adlercreutz H, Rowland I (2003) Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol 41(5):631–636

    Article  CAS  PubMed  Google Scholar 

  33. Cardona F, Andres-Lacueva C, Tulipani S et al (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8):1415–1422

    Article  CAS  PubMed  Google Scholar 

  34. Xue H, Xie W, Jiang Z et al (2016) 3,4-Dihydroxyphenylacetic acid, a microbiota-derived metabolite of quercetin, attenuates acetaminophen (APAP)-induced liver injury through activation of Nrf-2. Xenobiotica 46(10):931–939

    Article  CAS  PubMed  Google Scholar 

  35. Zhao H, Jiang Z, Chang X et al (2018) 4-Hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front Pharmacol 9:653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781

    Article  CAS  PubMed  Google Scholar 

  37. Watkins PB, Zimmerman HJ, Knapp MJ et al (1994) Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271(13):992–998

    Article  CAS  PubMed  Google Scholar 

  38. Wallace BD, Wang H, Lane KT et al (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330(6005):831–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leemann T, Transon C, Dayer P (1993) Cytochrome P450TB (CYP2C): a major monooxygenase catalyzing diclofenac 4’-hydroxylation in human liver. Life Sci 52(1):29–34

    Article  CAS  PubMed  Google Scholar 

  40. Kretz-Rommel A, Boelsterli UA (1993) Diclofenac covalent protein binding is dependent on acyl glucuronide formation and is inversely related to P450-mediated acute cell injury in cultured rat hepatocytes. Toxicol Appl Pharmacol 120(1):155–161

    Article  CAS  PubMed  Google Scholar 

  41. LoGuidice A, Wallace BD, Bendel L et al (2012) Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 341(2):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aithal GP (2005) Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin Drug Saf 3(6):519–523

    Article  CAS  Google Scholar 

  43. Yano A, Higuchi S, Tsuneyama K et al (2012) Involvement of immune-related factors in diclofenac-induced acute liver injury in mice. Toxicology 293(1–3):107–114

    Article  CAS  PubMed  Google Scholar 

  44. Deng X, Stachlewitz RF, Liguori MJ et al (2006) Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J Pharmacol Exp Ther 319(3):1191–1199

    Article  CAS  PubMed  Google Scholar 

  45. Deng X, Liguori MJ, Sparkenbaugh EM et al (2008) Gene expression profiles in livers from diclofenac-treated rats reveal intestinal bacteria-dependent and -independent pathways associated with liver injury. J Pharmacol Exp Ther 327(3):634–644

    Article  CAS  PubMed  Google Scholar 

  46. Clawson GASJ, Milam K, Wang YF, Gabriel C (1990) The hepatocyte protein synthesis defect induced by galactosamine involves hypomethylation of ribosomal RNA. Hepatology 11(3):428–434

    Article  CAS  PubMed  Google Scholar 

  47. Kasravi FBWL, Wang XD, Molin G, Bengmark S, Jeppsson B (1996) Bacterial translocation in acute liver injury induced by D-Galactosamine. Hepatology 23(1):97–103

    CAS  PubMed  Google Scholar 

  48. Li LJ, Wu ZW, Xiao DS, Sheng JF (2004) Changes of gut flora and endotoxin in rats with D-galactosamine-induced acute liver failure. World J Gastroenterol 10(14):2087–2090

    Google Scholar 

  49. Osman N, Adawi D, Ahrne S et al (2007) Endotoxin- and D-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry. Dig Liver Dis 39(9):849–856

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Lv L, Ye J et al (2019) Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol 103(1):375–393

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Xie J, Li Y et al (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55(2):821–831

    Article  CAS  PubMed  Google Scholar 

  52. Zakhari S (2006) Overview how is alcohol metabolized by the body? Alcohol Res Health 29(4):245–254

    PubMed  PubMed Central  Google Scholar 

  53. Arteel GE (2003) Oxidants and antioxidants in alcohol-induced liver disease [J]. Gastroenterology 124(3):778–790

    Article  CAS  PubMed  Google Scholar 

  54. Salaspuro V, Nyfors S, Heine R et al (1999) Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions. Scand J Gastroenterol 34(10):967–973

    Article  CAS  PubMed  Google Scholar 

  55. Elamin EE, Masclee AA, Dekker J et al (2013) Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 71(7):483–499

    Article  PubMed  Google Scholar 

  56. Tripathi A, Debelius J, Brenner DA et al (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15(7):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases [J]. Gastroenterology 146(6):1513–1524

    Article  CAS  PubMed  Google Scholar 

  58. Bajaj JS (2019) Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol

    Google Scholar 

  59. Lippai D, Bala S, Catalano D et al (2014) Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice [J]. Alcohol Clin Exp Res 38(8):2217–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang YLY, Sidhu A, Ma Z, McClain C, Feng W (2012) Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 303(1):G32-41

    Article  PubMed  CAS  Google Scholar 

  61. Neyrinck AM, Etxeberria U, Taminiau B et al (2017) Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota Mol Nutr Food Res 61(1)

    Google Scholar 

  62. Reunanen J, Kainulainen V, Huuskonen L et al (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81(11):3655–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Everarda A, Belzer C, Geurtsa L (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 110(22):9066–71

    Google Scholar 

  64. Grander CAT, Wieser V, Lowe P (2018) Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67(5):891–901

    Article  CAS  PubMed  Google Scholar 

  65. Canesso MCC, Lacerda NL, Ferreira CM, Gonçalves JL (2014) Comparing the effects of acute alcohol consumption in germ-free and conventional mice: the role of the gut microbiota. BMC Microbiol 14:240

    Google Scholar 

  66. Chen P, Miyamoto Y, Mazagova M et al (2015) Microbiota protects mice against acute alcohol-induced liver injury. Alcohol Clin Exp Res 39(12):2313–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vinholt Schiødt F (2003) Viral hepatitis-related acute liver failure. Am J Gastroenterol 98(2):448–453

    Article  Google Scholar 

  68. Chou HH, Chien WH, Wu LL et al (2015) Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A 112(7):2175–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ren YDYZ, Yang LZ, Jin LX, Wei WJ (2017) Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology 65(5):1765–1768

    Article  PubMed  Google Scholar 

  70. Zhang Y, Zhao R, Shi D et al (2019) Characterization of the circulating microbiome in acute-on-chronic liver failure associated with hepatitis B. Liver Int 39(7):1207–1216

    Google Scholar 

  71. Nakamura K, Kageyama S, Ito T, Hirao H, Kadono K, Aziz A, Dery KJ, Everly MJ, Taura K, Uemoto S, Farmer DG, Kaldas FM, Busuttil RW, Kupiec-Weglinski JW (2019) Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest 129(8):3420–3434

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Kaplowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, G., Win, S., Than, T.A., Chen, P., Kaplowitz, N. (2020). Gut Microbiota and Liver Injury (I)—Acute Liver Injury. In: Chen, P. (eds) Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, vol 1238. Springer, Singapore. https://doi.org/10.1007/978-981-15-2385-4_3

Download citation

Publish with us

Policies and ethics