Skip to main content

Cryopreservation of Human Embryos: Basic Principles and Current Considerations

  • Chapter
  • First Online:
Textbook of Assisted Reproduction
  • 1316 Accesses

Abstract

It is now approaching 50 years since the first reports were made on cryopreservation of mammalian embryos with successful recoveries and subsequent live births. These successes were the result of growing shared knowledge between the fields of reproductive biology and cryobiology. Once manipulation of human embryos became possible in infertility treatment, embryo cryopreservation was quickly taken up to enhance logistics and patient management within the clinical services. Now, embryo cryopreservation is seen as a crucial component to enhance overall success rates, whilst advances in cryobiology have brought forward new techniques such as vitrification. This chapter reviews the history of embryo cryopreservation, the basic scientific principles underpinning the technologies, and provides an example of how these are currently applied in a clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown JR, Modell E, Obasaju M, King YK. Natural cycle in-vitro fertilization with embryo cryopreservation prior to chemotherapy for carcinoma of the breast. Hum Reprod. 1996 Jan;11(1):197–9.

    CAS  PubMed  Google Scholar 

  2. Wong KM, Mastenbroek S, Repping S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril. 2014 Jul;102(1):19–26.

    CAS  PubMed  Google Scholar 

  3. Whittingham DG, Leibo SP, Mazur P. Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science. 1972;178(4059):411–4.

    CAS  PubMed  Google Scholar 

  4. Leibo SP. Cryobiology: preservation of mammalian embryos. Basic Life Sci. 1986;37:251–72.

    CAS  PubMed  Google Scholar 

  5. Leibo SP. Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology. 2008 Jan 1;69(1):37–47.

    CAS  PubMed  Google Scholar 

  6. Molisch H. Scientific Literature: Untersuchungen uber das Erfrieren der Pflanzen. Science. 1897;6(157):1002–3.

    Google Scholar 

  7. Maximov NA. Chemical protective agents of plants against freezing injury concerning the nature of the protective effect. Berichte Dtsch Bot Geselschafft. 1912;30:504–16.

    Google Scholar 

  8. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949 Oct 15;164(4172):666.

    CAS  PubMed  Google Scholar 

  9. Chaplin M. Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol. 2006;7(11):861–6.

    CAS  PubMed  Google Scholar 

  10. Mazur P. Principles of cryobiology. In: Barry J, Fuller NL, Benson EE, editors. Life in the frozen state. Boca Raton, FL: CRC Press; 2004. p. 3–65.

    Google Scholar 

  11. Muldrew K, Elliott J, McGann L, Fuller B, Benson E, State LN. The water to ice transition: implications for living cells. In: Fuller BJ, Lane N, Benson EE, editors. Life in the frozen state. Boca Raton, FL: CRC Press; 2004. p. 67–108.

    Google Scholar 

  12. Toner M, Cravalho EG, Stachecki J, Fitzgerald T, Tompkins RG, Yarmush ML, et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential. Biophys J. 1993 Jun;64(6):1908–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lovelock JE, Bishop MW. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959;183(4672):1394–5.

    CAS  PubMed  Google Scholar 

  14. Karow AM. Cryoprotectants—a new class of drugs. J Pharm Pharmacol. 1969;21(4):209–23.

    CAS  PubMed  Google Scholar 

  15. Fuller B, Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online. 2004 Dec;9(6):680–91.

    PubMed  Google Scholar 

  16. Elliott GD, Wang S, Fuller BJ. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017 Jun;76:74–91.

    CAS  PubMed  Google Scholar 

  17. Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25(6):375–88.

    Google Scholar 

  18. Fuller B, Gonzalez-Molina J, Erro E, De Mendonca J, Chalmers S, Awan M, et al. Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Ther Insights. 2017;3(5):359–78.

    Google Scholar 

  19. Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil Steril. 1985;44(5):645–51.

    CAS  PubMed  Google Scholar 

  20. Mukaida T, Oka C. Vitrification of oocytes, embryos and blastocysts. Best Pract Res Clin Obstet Gynaecol. 2012 Dec;26(6):789–803.

    PubMed  Google Scholar 

  21. Best BP. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 18(5):422–36.

    Google Scholar 

  22. Fuller BJ, Paynter SJ. Cryopreservation of mammalian embryos. Methods Mol Biol. 2007;368:325–39.

    CAS  PubMed  Google Scholar 

  23. Jackowski S, Leibo SP, Mazur P. Glycerol permeabilities of fertilized and unfertilized mouse ova. J Exp Zool. 1980;212(3):329–41.

    CAS  PubMed  Google Scholar 

  24. Paynter SJ, O’Neil L, Fuller BJ, Shaw RW. Membrane permeability of human oocytes in the presence of the cryoprotectant propane-1,2-diol. Fertil Steril. 2001;75(3):532–8.

    CAS  PubMed  Google Scholar 

  25. Paynter SJ, McGrath JJ, Fuller BJ, Shaw RW. A method for differentiating nonunique estimates of membrane transport properties: mature mouse oocytes exposed to glycerol. Cryobiology. 1999;39(3):205–14.

    CAS  PubMed  Google Scholar 

  26. Paynter SJ, Cooper A, Gregory L, Fuller BJ, Shaw RW. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum Reprod. 1999;14(9):2338–42.

    CAS  PubMed  Google Scholar 

  27. Leibo SP, Mazur P. The role of cooling rates in low-temperature preservation. Cryobiology. 1971 Oct;8(5):447–52.

    CAS  PubMed  Google Scholar 

  28. Morris GJ, Acton E. Controlled ice nucleation in cryopreservation—a review. Cryobiology. 2013;66(2):85–92.

    PubMed  Google Scholar 

  29. Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology. 1985 Aug;22(4):367–77.

    CAS  PubMed  Google Scholar 

  30. Zhang M, Oldenhof H, Sieme H, Wolkers WF. Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim Biophys Acta Biomembr. 2016 Jun;1858(6):1400–9.

    CAS  Google Scholar 

  31. Hayes AR, Pegg DE, Kingston RE. A multirate small-volume cooling machine. Cryobiology. 1974;11(4):371–7.

    CAS  PubMed  Google Scholar 

  32. Sperling S. A simple apparatus for controlled rate corneal freezing II. Acta Ophthalmol. 1981;59(1):134–41.

    CAS  Google Scholar 

  33. Leibo SP, McGrath JJ, Cravalho EG. Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology. 1978 Jun 1;15(3):257–71.

    CAS  PubMed  Google Scholar 

  34. Liu W-X, Luo M-J, Huang P, Yue L-M, Wang L, Zhao C-Y, et al. Comparative study between slow freezing and vitrification of mouse embryos using different cryoprotectants. Reprod Domest Anim. 2009;44(5):788–91.

    CAS  PubMed  Google Scholar 

  35. Fahning ML, Garcia MA. Status of cryopreservation of embryos from domestic animals. Cryobiology. 1992 Feb;29(1):1–18.

    CAS  PubMed  Google Scholar 

  36. Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys. 1990 Aug;17(1):53–92.

    CAS  PubMed  Google Scholar 

  37. Liu Q, Lian Y, Huang J, Ren X, Li M, Lin S, et al. The safety of long-term cryopreservation on slow-frozen early cleavage human embryos. J Assist Reprod Genet. 2014 Apr 28;31(4):471–5.

    PubMed  PubMed Central  Google Scholar 

  38. Yao Y-C, Qi M-Y, Lu M-H, Wang S-M, Li W, Han H-B. Long-term cryopreservation had no adverse effect on viability of embryos and their offspring in sheep. Anim Reprod Sci. 2012 Dec;136(1–2):42–6.

    PubMed  Google Scholar 

  39. Luyet BJ, Gehenio PM. Thermoelectric recording of ice formation and of vitrification during ultra-rapid cooling of protoplasm. Fed Proc. 1947;6(1 Pt 2):157.

    CAS  PubMed  Google Scholar 

  40. Wowk B. Thermodynamic aspects of vitrification. Cryobiology. 2010 Feb;60(1):11–22.

    CAS  PubMed  Google Scholar 

  41. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 1985;313(6003):573–5.

    CAS  PubMed  Google Scholar 

  42. Fahy GM, Wowk B. Principles of cryopreservation by vitrification. Methods Mol Biol. 2015;1257:21–82.

    CAS  PubMed  Google Scholar 

  43. Son W-Y, Yoon S-H, Park S-J, Yoon H-J, Lee W-D, Lim J-H. Ongoing twin pregnancy after vitrification of blastocysts produced by in-vitro matured oocytes retrieved from a woman with polycystic ovary syndrome: case report. Hum Reprod. 2002 Nov;17(11):2963–6.

    PubMed  Google Scholar 

  44. El-Danasouri I, Selman H. Successful pregnancies and deliveries after a simple vitrification protocol for day 3 human embryos. Fertil Steril. 2001 Aug;76(2):400–2.

    CAS  PubMed  Google Scholar 

  45. Vanderzwalmen P, Bertin G, Debauche C, Standaert V, van Roosendaal E, Vandervorst M, et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod. 2002 Mar;17(3):744–51.

    PubMed  Google Scholar 

  46. Kasai M, Mukaida T. Cryopreservation of animal and human embryos by vitrification. Reprod Biomed Online. 2004 Aug;9(2):164–70.

    CAS  PubMed  Google Scholar 

  47. Lane M, Schoolcraft WB, Gardner DK. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril. 1999 Dec;72(6):1073–8.

    CAS  PubMed  Google Scholar 

  48. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007 Jan 1;67(1):73–80.

    CAS  PubMed  Google Scholar 

  49. Edgar DH, Archer J, McBain J, Bourne H. Embryonic factors affecting outcome from single cryopreserved embryo transfer. Reprod Biomed Online. 2007 Jun;14(6):718–23.

    PubMed  Google Scholar 

  50. Vajta G. Vitrification in human and domestic animal embryology: work in progress. Reprod Fertil Dev. 2013;25(5):719–27.

    PubMed  Google Scholar 

  51. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, et al. A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod. 2008 Jun 20;23(9):1976–82.

    CAS  PubMed  Google Scholar 

  52. Kolibianakis EM, Venetis CA, Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow freezing: which one is better? Curr Opin Obstet Gynecol. 2009 Jun;21(3):270–4.

    PubMed  Google Scholar 

  53. Konc J, Kanyó K, Kriston R, Somoskői B, Cseh S. Cryopreservation of embryos and oocytes in human assisted reproduction. Biomed Res Int. 2014;2014:1–9.

    Google Scholar 

  54. Kirichek O, Soper A, Dzyuba B, Callear S, Fuller B. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions. PLoS One. 2015 Mar 27;10(3):e0120611.

    PubMed  PubMed Central  Google Scholar 

  55. Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17(3):243–56.

    CAS  PubMed  Google Scholar 

  56. Rall WF, Polge C. Effect of warming rate on mouse embryos frozen and thawed in glycerol. J Reprod Fertil. 1984 Jan;70(1):285–92.

    CAS  PubMed  Google Scholar 

  57. Leibo SP, Pool TB. The principal variables of cryopreservation: solutions, temperatures, and rate changes. Fertil Steril. 2011 Aug;96(2):269–76.

    CAS  PubMed  Google Scholar 

  58. Byrd W. Cryopreservation, thawing, and transfer of human embryos. Semin Reprod Med. 2002 Feb;20(1):37–43.

    PubMed  Google Scholar 

  59. Wood MJ, Mollison J, Harrild K, Ferguson E, McKay T, Srikantharajah A, et al. A pragmatic RCT of conventional versus increased concentration sucrose in freezing and thawing solutions for human embryos. Hum Reprod. 2011 Aug 1;26(8):1987–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hochi S, Akiyama M, Minagawa G, Kimura K, Hanada A. Effects of cooling and warming rates during vitrification on fertilization of in vitro-matured bovine oocytes. Cryobiology. 2001 Feb;42(1):69–73.

    CAS  PubMed  Google Scholar 

  61. Seki S, Jin B, Mazur P. Extreme rapid warming yields high functional survivals of vitrified 8-cell mouse embryos even when suspended in a half-strength vitrification solution and cooled at moderate rates to -196°C. Cryobiology. 2014 Feb;68(1):71–8.

    PubMed  Google Scholar 

  62. Desai N, Blackmon H, Szeptycki J, Goldfarb J. Cryoloop vitrification of human day 3 cleavage-stage embryos: post-vitrification development, pregnancy outcomes and live births. Reprod Biomed Online. 2007 Feb;14(2):208–13.

    PubMed  Google Scholar 

  63. Meryman HT. Red cell freezing by the American National Red Cross. Am J Med Technol. 1975;41(7):265–82.

    CAS  PubMed  Google Scholar 

  64. Scott KL, Lecak J, Acker JP. Biopreservation of red blood cells: past, present, and future. Transfus Med Rev. 2005;19(2):127–42.

    PubMed  Google Scholar 

  65. Desrosiers P, Légaré C, Leclerc P, Sullivan R. Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil Steril. 2006;85(6):1744–52.

    CAS  PubMed  Google Scholar 

  66. Germann A, Oh Y-J, Schmidt T, Schön U, Zimmermann H, von Briesen H. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology. 2013;67(2):193–200.

    CAS  PubMed  Google Scholar 

  67. Grout BWW, Morris GJ. Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology. 2009;71(7):1079–82.

    CAS  PubMed  Google Scholar 

  68. Vajta G, Rienzi L, Ubaldi FM. Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online. 2015 Apr;30(4):325–33.

    PubMed  Google Scholar 

  69. Hunt CJ, Pegg DE. Improved temperature stability in gas-phase nitrogen refrigerators: use of a copper heat shunt. Cryobiology. 1996;33(5):544–51.

    Google Scholar 

  70. Alikani M. Cryostorage of human gametes and embryos: a reckoning. Reprod Biomed Online. 2018 Jul 1;37(1):1–3.

    PubMed  Google Scholar 

  71. Maheshwari A, Griffiths S, Bhattacharya S. Global variations in the uptake of single embryo transfer. Hum Reprod Update. 17(1):107–20.

    Google Scholar 

  72. Devroey P, Polyzos NP, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26(10):2593–7.

    PubMed  Google Scholar 

  73. Yasmin E, Balachandren N, Davies MC, Jones GL, Lane S, Mathur R, et al. Fertility preservation for medical reasons in girls and women: British fertility society policy and practice guideline. Hum Fertil. 2018 Jan 2;21(1):3–26.

    Google Scholar 

  74. Cardozo ER, Thomson AP, Karmon AE, Dickinson KA, Wright DL, Sabatini ME. Ovarian stimulation and in-vitro fertilization outcomes of cancer patients undergoing fertility preservation compared to age matched controls: a 17-year experience. J Assist Reprod Genet. 2011;32(4):587–96.

    Google Scholar 

  75. Brison D, Cutting R, Clarke H, Wood M. ACE consensus meeting report: oocyte and embryo cryopreservation Sheffield 17.05.11. Hum Fertil. 2012 Jun 23;15(2):69–74.

    Google Scholar 

  76. Alpha. The alpha consensus meeting on cryopreservation key performance indicators and benchmarks: proceedings of an expert meeting. Reprod Biomed Online. 2012 Aug;25(2):146–67.

    Google Scholar 

  77. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 23(2):139–55.

    Google Scholar 

  78. Harbottle S, Hughes C, Cutting R, Roberts S, Brison D, Association of Clinical Embryologists & The (ACE) British Fertility Society (BFS). Elective single embryo transfer: an update to UK best practice guidelines. Hum Fertil (Camb). 18(3):165–83.

    Google Scholar 

  79. Roque M. Freeze-all policy: is it time for that? J Assist Reprod Genet. 2015 Feb 27;32(2):171–6.

    PubMed  Google Scholar 

  80. Magdi Y, El-Damen A, Fathi AM, Abdelaziz AM, Abd-Elfatah Youssef M, Abd-Allah AA-E, et al. Revisiting the management of recurrent implantation failure through freeze-all policy. Fertil Steril. 2017 Jul;108(1):72–7.

    PubMed  Google Scholar 

  81. Chang J-C, Chen M-J, Guu H-F, Chen Y-F, Yi Y-C, Kung H-F, et al. Does the “freeze-all” policy allow for a better outcome in assisted reproductive techniques than the use of fresh embryo transfers? - A retrospective study on cumulative live birth rates. Taiwan J Obstet Gynecol. 2017 Dec;56(6):775–80.

    PubMed  Google Scholar 

  82. Rinaudo PF, Hsu J. To freeze or not to freeze: heating the debate but cooling the practice? J Assist Reprod Genet. 2017 Feb 14;34(2):187–9.

    PubMed  PubMed Central  Google Scholar 

  83. Van Landuyt L, Stoop D, Verheyen G, Verpoest W, Camus M, Van de Velde H, et al. Outcome of closed blastocyst vitrification in relation to blastocyst quality: evaluation of 759 warming cycles in a single-embryo transfer policy. Hum Reprod. 2011;26(3):527–34.

    PubMed  Google Scholar 

  84. HFEA. Code of practice, 8th edn. London; 2009.

    Google Scholar 

  85. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9.

    CAS  PubMed  Google Scholar 

  86. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984 Aug;42(2):293–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Fuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hunter, H., Getreu, N., Wood, M., Fuller, B. (2020). Cryopreservation of Human Embryos: Basic Principles and Current Considerations. In: Allahbadia, G.N., Ata, B., Lindheim, S.R., Woodward, B.J., Bhagavath, B. (eds) Textbook of Assisted Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-15-2377-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2377-9_57

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2376-2

  • Online ISBN: 978-981-15-2377-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics