Skip to main content

Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination Control, and the Maximum Likelihood Estimation of Model Parameters

  • Chapter
  • First Online:
Mathematical Modelling in Health, Social and Applied Sciences

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

This study presents a family of stochastic models for the dynamics of influenza in a closed human population. We consider treatment for the disease in the form of vaccination and incorporate the periods of effectiveness of the vaccine and infectiousness for the individuals in the population. Our model is a SVIR model, with trinomial transition probabilities, where all individuals who recover from the disease acquire permanent natural immunity against the strain of the disease. A special SVIR model in the stochastic family based on correlated vaccination and infection probabilities at any instant is presented. The methods of maximum likelihood and expectation–maximization algorithm are applied to find estimates for the parameters of the chain. Moreover, estimators for some special epidemiological control parameters, such as the basic reproduction number, are computed. A numerical simulation example is presented to find the MLE of the parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The cumulative sums in (5.48)–(5.49) were calculated using “for-loops” in R.

References

  1. CDC Estimating Seasonal Influenza-Associated Deaths. https://www.cdc.gov/flu/about/disease/us_flu-related_deaths.htm

  2. D. Iuliano, K.Roguski, H. Chang, D. Muscatello, R. Palekar, S. Tempia et al., Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391(10127), 1285–1300, 31 Mar 2018

    Google Scholar 

  3. WHO Influenza, burden of disease. http://www.who.int/influenza/surveillance_monitoring/bod/en/

  4. CDC  Flu  symptoms  and  complications. https://www.cdc.gov/flu/consumer/symptoms.htm/

  5. CDC Types of Influenza Viruses. https://www.cdc.gov/flu/about/viruses/types.htm

  6. CDC How Flu Spreads. https://www.cdc.gov/flu/about/disease/spread.htm

  7. CDC Different types of flu vaccines. https://www.cdc.gov/flu/vaccines/index.htm

  8. H.C. Tuckwell, R,J. Williams, Some properties of a simple stochastic epidemic model of SIR type. Math. Biosci. 208, 76–97 (2007)

    Article  MathSciNet  Google Scholar 

  9. D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. Biomath. 11(6) 1850085 (46 pages) (2018). https://doi.org/10.1142/S1793524518500857

    Article  MathSciNet  Google Scholar 

  10. P. Witbooi, G.E. Muller, G.J. Van Schalkwyk, Vaccination control in a stochastic SVIR epidemic model. Comput. Math. Methods Med. 2015, Article ID 271654, 9 pages (2015). https://doi.org/10.1155/2015/271654

    Article  MathSciNet  Google Scholar 

  11. D. Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbation. Appl. Math. Comput. 294, 49–76 (2017)

    MathSciNet  MATH  Google Scholar 

  12. D. Wanduku, G.S. Ladde, Global properties of a two-scale network stochastic delayed human epidemic dynamic model. Nonlinear Anal. Real World Appl. 13, 794–816 (2012)

    Article  MathSciNet  Google Scholar 

  13. F. Etbaigha, A. Willms, Z. Poljak, An SEIR model of influenza A virus infection and reinfection within a farrow-to-finish swine farm. PLOS ONE 13(9), e0202493. https://doi.org/10.1371/journal.pone.0202493

    Article  Google Scholar 

  14. M.E. Alexander, C. Bowman, S.M. Moghadas et al., Vaccination model for transmission dynamics of influenza. SIAM J. Appl. Dyn. Syst. 3, 503–524 (2004)

    Article  MathSciNet  Google Scholar 

  15. D. Wanduku, The stochastic extinction and stability conditions for nonlinear malaria epidemics. Math. Biosci. Eng. 16, 3771–3806 (2019)

    Article  MathSciNet  Google Scholar 

  16. A. Scherer, A.R. McLean, Mathematical models of vaccination. Brit. Med. Bull. 62, 187–199 (2002)

    Article  Google Scholar 

  17. H.S. Rodrigues, M.T.T. Monteiro, D.F.M. Torres, Vaccination models and optimal control strategies to dengue. Math. Biosci. 247, 1–12 (2014)

    Article  MathSciNet  Google Scholar 

  18. A. Lloyd, Introduction to Epidemiological Modeling: Basic Models and Their Properties 23 Jan. 2017

    Google Scholar 

  19. M. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191–213 (1999)

    Article  MathSciNet  Google Scholar 

  20. C.M. Kribs-Zaleta, J.X. Velasco-Hernández, A simple vaccination model with multiple endemic states. J. Math. Biosci. 164, 183–201 (2000)

    Article  Google Scholar 

  21. D. Wanduku, G.S. Ladde, Fundamental properties of a two-scale network stochastic human epidemic dynamic model. Neural Parallel Sci. Comput. 19, 229–270 (2011)

    MathSciNet  MATH  Google Scholar 

  22. M. Ferrante, E. Ferraris, C. Rovira, On a stochastic epidemic SEIHR model and its diffusion approximation. TEST 25, 482 (2016). https://doi.org/10.1007/s11749-015-0465-z

    Article  MathSciNet  Google Scholar 

  23. R. Yaesoubi, T. Cohen, Generalized Markov models of infectious disease spread: a novel framework for developing dynamic health policies. Eur. J. Oper. Res. 215(3) (2011)

    Google Scholar 

  24. M. Greenwood, On the statistical measure of infectiousness. J. Hyg. Camb. 31, 336 (1931)

    Article  Google Scholar 

  25. H. Abbey, An examination of the Reed-Frost theory of epidemics. Hum. Biol. 24, 201 (1952)

    Google Scholar 

  26. J. Jacquez, A note on chain binomial models of epidemic spread: what is wrong with the Reed-Frost Model. Mathem. Biosci. 87(1), 73–82 (1987)

    Article  MathSciNet  Google Scholar 

  27. J. Gani, D. Jerwood, Markov chain methods in chain binomial epidemic models. Biometrics 27 (1971)

    Article  Google Scholar 

  28. J. Lin, V. Andreasen, S.A. Levin, Dynamics of influenza A; the linear three strain model. Math. Biosci. 162, 33–51 (1999)

    Article  MathSciNet  Google Scholar 

  29. M. Ajelli, P. Poletti, A. Melegaro S. Merler, The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Sci. Rep. 4, Article number: 7218 (2014)

    Google Scholar 

  30. L. Allen, An introduction to stochastic epidemic models, in Mathematical Epidemiology ed. by Brauer F., van den Driessche P., Wu J. Lecture Notes in Mathematics, vol. 1945 (Springer, Berlin, Heidelberg), pp. 81–130

    Chapter  Google Scholar 

  31. M. Gupta, Y. Chen, Theory and use of the EM Algorithm. Found. Trends Sig. Process. 4(3) (2010)

    Google Scholar 

  32. J. Bilmes, A gentle tutorial of the EM algorithm and it’s Application to parameter estimation for Gausian mixture and hidden Markov models. Int. Comput. Sci. Inst. (1998)

    Google Scholar 

  33. G. Casella, R. Berger, Statistical Inference, 2 edn. (Duxbury, 2002)

    Google Scholar 

  34. K. Dietz, The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 2(1), 23–41 (1993)

    Article  Google Scholar 

  35. J. Jones, Notes on  \(R_0\) (Stanford University, Department of Anthropological Sciences, 2007)

    Google Scholar 

  36. P. Holme, N. Masuda, The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. PLoS ONE 10(3) (2015)

    Article  Google Scholar 

  37. E. Vergu, H. Busson, P. Ezanno, Impact of the infection period distribution on the epidemic spread in a metapopulation model. PLoS ONE 5(2) (2010)

    Article  Google Scholar 

  38. CDC-FLUVIEW(1-17-2019). https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html; https://www.cdc.gov/flu/weekly/weeklyarchives2017-2018/Week39.htm

  39. FluVaxView 2017-18 Season. https://www.cdc.gov/flu/fluvaxview/coverage-1718estimates.htm

  40. US census Bureau, 2018 National and State Population Estimates. https://www.census.gov/newsroom/press-kits/2018/pop-estimates-national-state.html

Download references

Acknowledgements

This work was completed during the graduate studies of Cameron Newman, Omotomilola Jegede and Mymuna Monem in the department of Mathematical Sciences of Georgia Southern University (GSU) in 2018–2019 academic year, supervised by Dr. Wanduku. Mymuna Monem was part of the general group discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divine Wanduku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wanduku, D., Newman, C., Jegede, O., Oluyede, B. (2020). Modeling the Stochastic Dynamics of Influenza Epidemics with Vaccination Control, and the Maximum Likelihood Estimation of Model Parameters. In: Dutta, H. (eds) Mathematical Modelling in Health, Social and Applied Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-2286-4_2

Download citation

Publish with us

Policies and ethics