Skip to main content

Measurements for Visual Function, Including Gaze, and Electrooculography (EOG)

  • Chapter
  • First Online:
Bio-information for Hygiene

Abstract

Humans obtain information from their five senses, which include vision. In recent decades, numerous displays have been developed as a result of technological advancements, and such apparatuses can be used in daily life. The development of evaluation indicators for gaze data is a very important research topic in the hygiene field. In this chapter, we outline the types of eye movements, such as the saccade, smooth pursuit eye movement, vergence eye movement, optokinetic nystagmus, vestibulo-ocular reflex, and rotational eye movement. Thereafter, we introduce several methods for measuring eye movements, including the magnetic search coil method, pupil center corneal reflection method, limbus tracking meth-od, image analysis method, and electrooculography. Based on the eye movements measured by noncontact devices, indices are developed to evaluate the severity of visually induced motion sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanimura T, Jono Y, Hirata T, Matsuura Y, Takada H. Trial on low-pass filter design for bio-signal based on nonlinear analysis. Forma. 2019;34(1):13–20.

    Article  Google Scholar 

  2. Takada H, Miyao M, Takada M, Kinoshita F, Tahara H. Development of sports vision training system using virtual reality for prevention of mild cognitive impairment. Descente Sports Sci. 2019;40:97–109. Japanese

    Google Scholar 

  3. Bohning DE, Shastri A, Wassermann EM, Ziemann U, Lorberbaum JP, Nahas Z, Lomarev MP, George MS. BOLD-fMRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging. 2000;11:569–74.

    Article  CAS  Google Scholar 

  4. Tanimura T, Takada H, Sugiura A, Kinoshita F, Takada M. Effects of the low-resolution 3D video clip on cerebrum blood flow dynamics. Adv Sci Technol Eng Syst J. 2019;4(2):380–6.

    Article  Google Scholar 

  5. Mincholé A, Rodriguez B. Artificial intelligence for the electrocardiogram. Nat Med. 2019;25:22–3.

    Article  Google Scholar 

  6. Kinoshita F, Fujita K, Miyanaga K, Touyama H, Takada M, Takada H. Analysis of electrogastrograms during exercise loads. J Sports Med Doping Stud. 2018;8(2):285–94.

    Article  Google Scholar 

  7. Young LR, Sheena D. Methods and designs: survey of eye movement recording methods. Behav Res Methods Instrum. 1975;7:397–429.

    Article  Google Scholar 

  8. Leigh RJ, Zee DS. The neurology of eye movements. New York: Oxford University; 2015.

    Book  Google Scholar 

  9. Klein C, Ettinger U, editors. Eye movement research. Cham: Springer; 2019.

    Google Scholar 

  10. Javal LE. Essai sur la physiologie de la lecture. Ann Ocul. 1878;79:97–117.

    Google Scholar 

  11. Landolt E. Nouvelles recherches sur la physiologie des mouvements des yeux. Arch Ophthalmol. 1891;11:385–95.

    Google Scholar 

  12. Berthoz A, Melvill-Jones G. Adaptive mechanisms in gaze control. Amsterdam: Elsevier; 1985.

    Google Scholar 

  13. Howard IP. Human visual orientation. Chichester: Wiley; 1982.

    Google Scholar 

  14. Hoshino K, Ono N, Tomida M, Igo N. Measurement of rotational eye movement with blue light irradiation. In: Proceedings of the 3rd International Conference on Biomedical and Bioinformatics Engineering. 2017. p. 50–4.

    Google Scholar 

  15. Mueller J. Zur vergleichenden physiologie des gesichtssinnes des menschen und der thiere. Leipzig: Cnobloch; 1826.

    Google Scholar 

  16. Mueller J. Handbuch der Physiologie des Menschen. Coblenz: Verlag von Hoelscher; 1840.

    Google Scholar 

  17. Huey EB. Preliminary experiments in the physiology of reading. Am J Psychol. 1898;9(4):575–86.

    Article  Google Scholar 

  18. Robinson DA. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Bio-Med Electron. 1963;BME-10:137–45.

    Google Scholar 

  19. Fuchs AF, Robinson DA. A method for measuring horizontal and vertical eye movements chronically in the monkey. J Appl Physiol. 1966;21:1068–70.

    Article  CAS  Google Scholar 

  20. Remmel RS. An inexpensive eye movement monitor using the scleral search coil technique. IEEE Trans Biomed Eng. 1984;31:388–90.

    Article  CAS  Google Scholar 

  21. de Bie J. An afterimage vernier method for assessing the precision of eye movement monitors: results for the scleral coil technique. Vis Res. 1985;25:1341–3.

    Article  Google Scholar 

  22. von Noorden GK, Campos EC. Binocular vision and ocular motility. 6th ed. St Louis: Mosby; 2002. p. 477–80.

    Google Scholar 

  23. Zahn JR. Incidence and characteristics of voluntary nystagmus. J Neurol. 1978;41:617–23.

    CAS  Google Scholar 

  24. Whitmire E, Trutoiu L, Cavin R, Perek D, Scally B, Phillips J, Patel S, Patel S. EyeContact: scleral coil eye tracking for virtual reality. In: Proceedings of the 2016 ACM International Symposium on Wearable Computers. 2016. p. 184–91.

    Google Scholar 

  25. Cornsweet TN, Crane HD. Accurate two-dimensional eye tracker using first and fourth Purkinje images. J Opt Soc Am. 1973;63:921–8.

    Article  CAS  Google Scholar 

  26. Crane HD, Steele CM. An accurate three-dimensional eye tracker. Appl Opt. 1978;17:691–705.

    Article  CAS  Google Scholar 

  27. Dierkes K, Kassner M, Bulling A. A novel approach to single camera, glint-free 3D eye model fitting including corneal refraction. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA ‘18). 2018. Article no. 9. p. 9.

    Google Scholar 

  28. Yamamoto M, Matsuo R, Fukumori S, Nagamatsu S. Modeling corneal reflection for eye-tracking considering eyelid occlusion. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (ETRA ‘18). 2018. Article no. 95. p. 3.

    Google Scholar 

  29. Wen-Chung K, Yi-Chin C. Hierarchical search of optimal limbus circle matching for gaze tracking systems. In: 2017 IEEE 7th International Conference on Consumer Electronics—Berlin (ICCE-Berlin). 2017. p. 233–234.

    Google Scholar 

  30. Nirmalee D, Ranathunga L. Reader text highlighter based on gaze tracking and finite state machine. In: 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer). 2018. https://doi.org/10.1109/ICTER.2018.8615520.

  31. Hameed S, Ahmed IS. Security systems based on eye movement tracking methods. JQCM. 2018;10:70–8.

    Google Scholar 

  32. Yamanobe S, Taira S, Morizono T, Yagi T, Kamio T. Eye movement analysis system using computerized image recognition. Arch Otolaryngol Head Neck Surg. 1990;116:338–41.

    Article  CAS  Google Scholar 

  33. Imai T, Sekine K, Hattori K, Takeda N, Koizuka I, Nakamura K, Miura K, Fujioka H, Kubo T. Comparing the accuracy of video-oculography and the scleral search coil system in human eye movement analysis. Auris Nasus Larynx. 2005;32:3–9.

    Article  Google Scholar 

  34. Hatamian M, Anderson DJ. Design considerations for a real time ocular counter roll instrument. IEEE Trans Biomed Eng. 1983;30:278–88.

    Article  CAS  Google Scholar 

  35. Marg E. Development of electro-oculography; standing potential of the eye in registration of eye movement. AMA Arch Ophthalmol. 1951;45:169–85.

    Article  CAS  Google Scholar 

  36. Shackel B. Eye movement recording by electro-oculography. In: Venables PH, Martion I, editors. A manual of psychophysiological methods. Amsterdam: North-Holland; 1967. p. 300–34.

    Google Scholar 

  37. Ramkumar S, Kumar KS, Rajkumar TD, Ilayaraja M, Shankar K. A review-classification of electrooculogram based human computer interfaces. Biomed Res. 2018;29(6):1078–84.

    Article  Google Scholar 

  38. Lee K, Chang W, Kim S, Im C. Real-time “eye-writing” recognition using electrooculogram. IEEE Trans Neural Syst Rehabil Eng. 2017;25(1):37–48.

    Article  Google Scholar 

  39. Chang W, Cha H, Kim DY, Kim SH, Im C. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis. J Neuroeng Rehabil. 2017;14:89.

    Article  Google Scholar 

  40. Golding JF. Phasic skin conductance activity and motion sickness. Aviat Space Environ Med. 1992;63(3):165–71.

    CAS  PubMed  Google Scholar 

  41. Wan H, Hu S, Wang J. Correlation of phasic and motion sickness-conductance responses with severity of motion sickness induced by viewing an optokinetic rotating drum. Percept Mot Skills. 2003;97(3):1051–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Fujikake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujikake, K. (2021). Measurements for Visual Function, Including Gaze, and Electrooculography (EOG). In: Takada, H., Yokoyama, K. (eds) Bio-information for Hygiene. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-2160-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2160-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2159-1

  • Online ISBN: 978-981-15-2160-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics