Skip to main content

Recent Advances of Nature-Inspired Metaheuristic Optimization

  • Chapter
  • First Online:
Frontier Applications of Nature Inspired Computation

Abstract

Metaheuristic approaches receive a great interest in the area of optimization, especially when exact methods are missing, or the cost is extremely high. Besides the possibility to report good solutions in reasonable time, metaheuristic techniques are widely applicable. There are diverse categories of techniques that differ in number of search agents (or solutions), solution representation, and movement mechanism in search space. Just mentioned ingredients are determined according to the motivation or inspiration philosophy behind the technique. Nature-inspired optimization category is very popular and has proven high efficiency in many problems. It contains famous subclasses like evolutionary algorithms, swarm intelligence, and single-based techniques. Famous and classical examples of each subclass are genetic algorithm, particle swarm, and ant colony optimization, and simulated annealing, respectively. Nature-inspired optimization family grows so fast, and many members have joined it recently, for example, emperor penguin colony (2019), seagull optimization algorithm (2019), sailfish optimizer (2019), pity beetle algorithm (2018), emperor penguin optimizer (2018), multi-objective artificial sheep algorithm (2018), salp swarm algorithm (2017), electromagnetic field optimization (2016), sine cosine algorithm (2016), moth-flame optimization (2015), grey wolf optimizer (2014), flower pollination algorithm (2012), bat algorithm (2010), cuckoo search algorithm (2009), firefly algorithm (2008), and many others. There are many proposed hybridization and cooperation methods between techniques to produce improved versions of original ones. Nature-inspired techniques have been used in many application areas like theoretical computer science, engineering and control, forecasting, medical field, finance, management, operation research, and others. Also, new scientific disciplines like renewable energy, robotics, and navigation are feasible areas to make use of nature-inspired techniques. This chapter sheds light on six so recently new techniques that belong to nature-inspired optimization class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dey N (2018) Advancements in applied metaheuristic computing. IGI Global, Hershey, PA, 978-1

    Google Scholar 

  2. Khosravy M, Gupta N, Patel N, Senjyu T, Duque CA (2020) Particle swarm optimization of morphological filters for electrocardiogram baseline drift estimation. In: Dey N, Ashour AS, Bhattacharyya S (eds) Applied nature-inspired computing: algorithms and case studies. Springer, Singapore, pp 1–21

    Google Scholar 

  3. Moraes CA, De Oliveira, EJ, Khosravy, M, Oliveira, LW, Honório, LM, Pinto MF (2020) A hybrid bat-inspired algorithm for power transmission expansion planning on a practical Brazilian network. In: Dey N, Ashour AS, Bhattacharyya S (eds) Applied nature-inspired computing: algorithms and case studies. Springer, Singapore, pp 71–95

    Google Scholar 

  4. Sedaaghi MH, Khosravi M (2003) Morphological ECG signal preprocessing with more efficient baseline drift removal. In: Proceedings of the 7th IASTED international conference, ASC, pp 205–209

    Google Scholar 

  5. Khosravi M, Sedaaghi MH (2004) Impulsive noise suppression of electrocardiogram signals with mediated morphological filters. In: The 11th Iranian conference on biomedical engineering, Tehran, Iran, pp 207–212

    Google Scholar 

  6. Khosravy M, Asharif MR, Sedaaghi MH (2008) Medical image noise suppression: using mediated morphology. IEICE technical report, IEICE, pp 265–270

    Google Scholar 

  7. Khosravy M, Gupta N, Marina N, Sethi IK, Asharif MR (2017) Perceptual adaptation of image based on Chevreul-Mach bands visual phenomenon. IEEE Signal Process Lett 24(5):594–598

    Google Scholar 

  8. Khosravy M, Gupta N, Marina N, Sethi IK, Asharif MR (2017) Brain action inspired morphological image enhancement. Nature-inspired computing and optimization. Springer, Cham, pp 381–407

    Google Scholar 

  9. Gutierrez CE, Alsharif MR, Cuiwei H, Khosravy M, Villa R, Yamashita K, Miyagi H (2013) Uncover news dynamic by principal component analysis. ICIC Express Lett 7(4):1245–1250

    Google Scholar 

  10. Gutierrez CE, Alsharif MR, Khosravy M, Yamashita K, Miyagi H, Villa R (2014) Main large data set features detection by a linear predictor model. In: AIP conference proceedings, vol 1618, no 1, pp 733–737

    Google Scholar 

  11. Gutierrez CE, Alsharif MR, Yamashita K, Khosravy M (2014) A tweets mining approach to detection of critical events characteristics using random forest. Int J Next-Gener Comput 5(2):167–176

    Google Scholar 

  12. Khosravy M, Alsharif MR, Guo B, Lin H, Yamashita K (2009) A robust and precise solution to permutation indeterminacy and complex scaling ambiguity in BSS-based blind MIMO-OFDM receiver. In: International conference on independent component analysis and signal separation. Springer, Berlin, pp 670–677

    Google Scholar 

  13. Asharif F, Tamaki S, Alsharif MR, Ryu HG (2013) Performance improvement of constant modulus algorithm blind equalizer for 16 QAM modulation. Int J Innovative Comput Inf Control 7(4):1377–1384

    Google Scholar 

  14. Khosravy M, Alsharif MR, Yamashita K (2009) An efficient ICA based approach to multiuser detection in MIMO OFDM systems. Multi-carrier systems & solutions. Springer, Dordrecht, pp 47–56

    Google Scholar 

  15. Khosravy M, Alsharif MR, Khosravi M, Yamashita K (2010) An optimum pre-filter for ICA based multi-input multi-output OFDM system. In: 2010 2nd international conference on education technology and computer, vol 5. IEEE, pp V5-129

    Google Scholar 

  16. Khosravy M, Patel N, Gupta N, Sethi IK (2019) Image quality assessment: a review to full reference indexes. Recent trends in communication, computing, and electronics. Springer, Singapore, pp 279–288

    Google Scholar 

  17. Khosravy M, Asharif MR, Sedaaghi MH (2008) Morphological adult and fetal ECG preprocessing: employing mediated morphology (医用画像). 電子情報通信学会技術研究報告. MI, 医用画像 107(461):363–369

    Google Scholar 

  18. Sedaaghi MH, Daj R, Khosravi M (2001) Mediated morphological filters. In: Proceedings 2001 international conference on image processing (Cat. No. 01CH37205), vol 3. IEEE, pp 692–695

    Google Scholar 

  19. Khosravy M, Gupta N, Marina N, Sethi IK, Asharif MR (2017) Morphological filters: an inspiration from natural geometrical erosion and dilation. Nature-inspired computing and optimization. Springer, Cham, pp 349–379

    Google Scholar 

  20. Khosravy M, Asharif MR, Yamashita K (2009) A PDF-matched short-term linear predictability approach to blind source separation. Int J Innovative Comput Inf Control (IJICIC) 5(11):3677–3690

    Google Scholar 

  21. Khosravy M, Alsharif MR, Yamashita K (2009) A PDF-matched modification to stone’s measure of predictability for blind source separation. In: International symposium on neural networks. Springer, Berlin, pp 219–228

    Google Scholar 

  22. Khosravy M, Asharif MR, Yamashita K (2011) A theoretical discussion on the foundation of Stone’s blind source separation. Signal Image Video Process 5(3):379–388

    Google Scholar 

  23. Khosravy M, Asharif M, Yamashita K (2008) A probabilistic short-length linear predictability approach to blind source separation. In: 23rd international technical conference on circuits/systems, computers and communications (ITC-CSCC 2008), Yamaguchi, Japan, pp 381–384

    Google Scholar 

  24. Khosravy M, Kakazu S, Alsharif MR, Yamashita K (2010) Multiuser data separation for short message service using ICA (信号処理). 電子情報通信学会技術研究報告. SIP, 信号処理: IEICE Tech Rep 109(435):113–117

    Google Scholar 

  25. Khosravy M, Gupta N, Marina N, Asharif MR, Asharif F, Sethi IK (2015) Blind components processing a novel approach to array signal processing: a research orientation. In: 2015 international conference on intelligent informatics and biomedical sciences (ICIIBMS), IEEE, pp 20–26

    Google Scholar 

  26. Khosravy M, Punkoska N, Asharif F, Asharif MR (2014) Acoustic OFDM data embedding by reversible Walsh-Hadamard transform. In: AIP conference proceedings, vol 1618, no 1, pp 720–723

    Google Scholar 

  27. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press. Ann Arbor, MI.

    Google Scholar 

  28. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley

    Google Scholar 

  29. Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    MathSciNet  MATH  Google Scholar 

  30. Gupta N, Patel N, Tiwari BN, Khosravy M (2018) Genetic algorithm based on enhanced selection and log-scaled mutation technique. In: Proceedings of the future technologies conference. Springer, Cham, pp 730–748

    Google Scholar 

  31. Singh G, Gupta N, Khosravy M (2015) New crossover operators for real coded genetic algorithm (RCGA). In: 2015 international conference on intelligent informatics and biomedical sciences (ICIIBMS), IEEE, pp 135–140

    Google Scholar 

  32. Gupta N, Khosravy M, Patel N, Senjyu T (2018) A bi-level evolutionary optimization for coordinated transmission expansion planning. IEEE Access 6:48455–48477

    Google Scholar 

  33. Gupta N, Khosravy M, Patel N, Sethi IK (2018) Evolutionary optimization based on biological evolution in plants. Procedia Comput Sci 126:146–155

    Google Scholar 

  34. Gupta N, Khosravy M, Mahela OP, Patel N (2020) Plants biology inspired genetics algorithm: superior efficiency to firefly optimizer. In: Applications of firefly algorithm and its variants, from springer tracts in nature-inspired computing (STNIC). Springer International Publishing, in press

    Google Scholar 

  35. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv (CSUR) 35(3):268–308

    Google Scholar 

  36. Fleischer M (2003) The measure of Pareto optima applications to multi-objective metaheuristics. In: International conference on evolutionary multi-criterion optimization. Springer, Berlin, pp 519–533

    Google Scholar 

  37. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Google Scholar 

  38. Blum C, Roli A (2008) Hybrid metaheuristics: an introduction. Hybrid metaheuristics. Springer, Berlin, pp 1–30

    MATH  Google Scholar 

  39. Dixit A, Kumar S, Pant M, Bansal R (2018) Hybrid nature-inspired algorithms: methodologies, architecture, and reviews. In: International proceedings on advances in soft computing, intelligent systems and applications. Springer, Singapore, pp 299–306

    Google Scholar 

  40. Yang XS (2014) Nature-inspired optimization algorithms. Elsevier, Amsterdam

    Google Scholar 

  41. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  43. Dorigo M, Caro GD, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137–172

    Google Scholar 

  44. Haddad OB, Afshar A, Mariño MA (2008) Honey-bee mating optimization (HBMO) algorithm in deriving optimal operation rules for reservoirs. J Hydroinformatics 10(3):257–264

    Google Scholar 

  45. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, vol 200. Erciyes University, Engineering Faculty, Computer Engineering Department, pp 1–10

    Google Scholar 

  46. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Google Scholar 

  47. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, Piscataway, NJ, USA, pp 1942–1948

    Google Scholar 

  48. Noller C, Smith VR (1987) Ultraviolet selection pressure on earliest organisms. In: Kingston H, Fulling CP (eds) Natural environment background analysis. Oxford University Press, Oxford, pp 211–219

    Google Scholar 

  49. Yang XS (2008) Nature-inspired metaheuristic algorithms, 1st edn. Luniver Press, Bristol

    Google Scholar 

  50. Yang XS (2012) Bat algorithm for multi-objective optimisation. arXiv preprint arXiv:1203.6571

  51. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  52. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249

    Google Scholar 

  53. Lindfield G, Penny J (2017) Introduction to nature-inspired optimization. Academic Press, Cambridge

    Google Scholar 

  54. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    Google Scholar 

  55. Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res (IJSIR) 1(1):1–16

    MathSciNet  Google Scholar 

  56. Biswas A, Mishra KK, Tiwari S, Misra AK (2013) Physics-inspired optimization algorithms: a survey. J Optim

    Google Scholar 

  57. Bozorg-Haddad O (ed) (2018) Advanced optimization by nature-inspired algorithms. Springer, Singapore

    Google Scholar 

  58. Chu SC, Tsai PW (2007) Computational intelligence based on the behavior of cats. Int J Innovative Comput Inf Control 3(1):163–173

    Google Scholar 

  59. Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: 2009 international conference of soft computing and pattern recognition, IEEE, pp 43–48

    Google Scholar 

  60. Ahmadi-Javid A (2011) Anarchic society optimization: a human-inspired method. In: 2011 IEEE Congress of Evolutionary Computation (CEC), IEEE, pp 2586–2592

    Google Scholar 

  61. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Google Scholar 

  62. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Google Scholar 

  63. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  64. Abedinia O, Amjady N, Ghasemi A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116

    MathSciNet  Google Scholar 

  65. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  66. Kuo RJ, Zulvia FE (2015) The gradient evolution algorithm: a new metaheuristic. Inf Sci 316:246–265

    MATH  Google Scholar 

  67. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Google Scholar 

  68. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    Google Scholar 

  69. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  70. Yang XS (ed) (2017) Nature-inspired algorithms and applied optimization, vol 744. Springer, Berlin

    Google Scholar 

  71. Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S (2019) Emperor penguins colony: a new metaheuristic algorithm for optimization. Evol Intel 12(2):211–226

    Google Scholar 

  72. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, IEEE, pp 4661–4667

    Google Scholar 

  73. Sang HY, Duan PY, Li JQ (2018) An effective invasive weed optimization algorithm for scheduling semiconductor final testing problem. Swarm Evol Comput 38:42–53

    Google Scholar 

  74. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Google Scholar 

  75. Mendenhall W, Beaver RJ, Barbara MB (2012) Introduction to probability and statistics. Cengage Learning, Boston

    MATH  Google Scholar 

  76. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Google Scholar 

  77. Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, SIS 2005, IEEE, pp 68–75

    Google Scholar 

  78. Chen Q, Liu B, Zhang Q, Liang J (2015) Evaluation criteria for CEC special session and competition on bound constrained single-objective computationally expensive numerical optimization. In: CEC

    Google Scholar 

  79. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  80. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Google Scholar 

  81. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Google Scholar 

  82. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  83. Wilcoxon F (1992) Individual comparisons by ranking methods. Breakthroughs in statistics. Springer, New York, NY, pp 196–202

    Google Scholar 

  84. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 50–60

    Google Scholar 

  85. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34

    Google Scholar 

  86. Moosavi SHS, Bardsiri VK (2017) Satin bowerbird optimizer: a new optimization algorithm to optimize ANFIS for software development effort estimation. Eng Appl Artif Intell 60:1–15

    Google Scholar 

  87. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  88. Wang GG (2003) Adaptive response surface method using inherited latin hypercube design points. J Mech Des 125(2):210–220

    Google Scholar 

  89. Liu J, Li Y (2012) An improved adaptive response surface method for structural reliability analysis. J Central South Univ 19:1148–1154

    Google Scholar 

  90. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Google Scholar 

  91. Siddall JN (1972) Analytical decision-making in engineering design. Prentice Hall, USA

    Google Scholar 

  92. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    MathSciNet  MATH  Google Scholar 

  93. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. ASME J Eng Ind 98:1021–1025

    Google Scholar 

  94. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Google Scholar 

  95. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  96. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10(2):629–640

    Google Scholar 

  97. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33(6):735–748

    Google Scholar 

  98. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Google Scholar 

  99. Kallioras NA, Lagaros ND, Avtzis DN (2018) Pity beetle algorithm—a new metaheuristic inspired by the behavior of bark beetles. Adv Eng Softw 121:147–166

    Google Scholar 

  100. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360), IEEE, pp 69–73

    Google Scholar 

  101. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Google Scholar 

  102. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC’02 (Cat. No. 02TH8600), vol 2, IEEE, pp 1671–1676

    Google Scholar 

  103. Parsopoulos KE (2004) UPSO: a unified particle swarm optimization scheme. Lecture series on computer and computational science, vol 1, pp 868–873

    Google Scholar 

  104. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Google Scholar 

  105. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  106. Chen WN, Zhang J, Lin Y, Chen N, Zhan ZH, Chung HSH, Shi YH (2012) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258

    Google Scholar 

  107. Chen D, Wang J, Zou F, Hou W, Zhao C (2012) An improved group search optimizer with operation of quantum-behaved swarm and its application. Appl Soft Comput 12(2):712–725

    Google Scholar 

  108. Loshchilov I, Stuetzle T, Liao T (2013) Ranking results of CEC’13 special session & competition on real-parameter single objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June, pp 20–23

    Google Scholar 

  109. Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 635

    Google Scholar 

  110. Preux P, Munos R, Valko M (2014) Bandits attack function optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp 2245–2252

    Google Scholar 

  111. Yu C, Kelley L, Zheng S, Tan Y (2014) Fireworks algorithm with differential mutation for solving the CEC 2014 competition problems. In: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp 3238–3245

    Google Scholar 

  112. Hu Z, Bao Y, Xiong T (2014) Partial opposition-based adaptive differential evolution algorithms: evaluation on the CEC 2014 benchmark set for real-parameter optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp 2259–2265

    Google Scholar 

  113. Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp 1658–1665

    Google Scholar 

  114. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Google Scholar 

  115. Chen Q, Liu B, Zhang Q, Liang J, Suganthan P, Qu B (2014) Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University

    Google Scholar 

  116. Lai X, Li C, Zhang N, Zhou J (2018) A multi-objective artificial sheep algorithm. Neural Comput Appl 1–35

    Google Scholar 

  117. Wang W, Li C, Liao X, Qin H (2017) Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm. Appl Energy 187:612–626

    Google Scholar 

  118. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Google Scholar 

  119. Coello CC, Lechuga MS (2002) MOPSO: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), vol 2. IEEE, pp 1051–1056

    Google Scholar 

  120. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  121. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Google Scholar 

  122. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2009) Multi-objective optimization test instances for the CEC 2009 special session and competition. University of Essex

    Google Scholar 

  123. Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary multi-criterion optimization. Springer, Berlin

    Google Scholar 

  124. Su YX, Chi R (2017) Multi-objective particle swarm-differential evolution algorithm. Neural Comput Appl 28(2):1–12

    Google Scholar 

  125. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Google Scholar 

  126. Basu M (2004) An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling. Electr Power Syst Res 69(2–3):277–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Elsayed Lotfy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helmi, A.M., Lotfy, M.E. (2020). Recent Advances of Nature-Inspired Metaheuristic Optimization. In: Khosravy, M., Gupta, N., Patel, N., Senjyu, T. (eds) Frontier Applications of Nature Inspired Computation. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-2133-1_1

Download citation

Publish with us

Policies and ethics