Skip to main content

Enzyme Technology Prospects and Their Biomedical Applications

  • Chapter
  • First Online:
Advances in Bioengineering

Abstract

Enzymes are natural catalysts and protein molecules executing specialized catalysis of substrate to product in chemical reactions. Enzyme technology uses enzyme as a biocatalyst to manufacture new products in bulk in the most dynamic fields such as food, fine chemicals, pharmaceuticals, biofuels, and biopolymers. The most common types of industrial enzymes are proteases, amylases, lipase, cellulases, and xylanases. Enzymes are now increasingly being used in medical application such as therapeutics, drug delivery, diagnostic, new drug development, bioanalysis, and biosensors. Examples of some biomedical enzymes are cytochrome oxidase, creatine kinase, streptokinase, urokinase, trypsin, chymotrypsin, and serratiopeptidase. New advancements in “white biotechnology,” mainly in protein engineering, have offered imperative techniques for the effective development of new enzymes using directed evolution. The present paper aims to provide a review on industrial enzymes, stressing on recent advances in enzyme engineering and applications in medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguera K, Gallix F, Gay F, Senechal K, Cire S, Horand F, Scheer A, Bourgeaux V (2018) Enzymatic combination investigation in cancer therapy, AACR

    Google Scholar 

  • Asal M, Özen Ö, Şahinler M, Polatoğlu İ (2018) Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 18(6):1924

    Article  CAS  PubMed Central  Google Scholar 

  • Bhatia S (n.d.) Industrial enzymes and their applications

    Google Scholar 

  • Bjelakovi G, Pavlovi D (n.d.) Competitive inhibitors of enzymes and their therapeutic application, 6

    Google Scholar 

  • Bretner M (2015) The specific enzyme inhibitors for potential therapeutic use. Postepy Biochem 61(3):292–297

    CAS  PubMed  Google Scholar 

  • Chen G-Q, Jiang X-R (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100

    Article  CAS  PubMed  Google Scholar 

  • Colmati F, Sgobbi LF, Teixeira GF, Vilela RS, Martins TD, Figueiredo GO (2019) Electrochemical biosensors containing pure enzymes or crude extracts as enzyme sources for pesticides and phenolic compounds with pharmacological property detection and quantification. In: Environmental biosensors. IntechOpen, Rijeka

    Google Scholar 

  • de la Iglesia-García D, Huang W, Szatmary P (2017) Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: systematic review and meta-analysis. Gut 66:1354–1355

    PubMed  Google Scholar 

  • Denholm EM, Lin Y-Q, Silver PJ (2001) Anti-tumor activities of chondroitinase AC and chondroitinase B: inhibition of angiogenesis, proliferation and invasion. Eur J Pharmacol 416(3):213–221

    Article  CAS  PubMed  Google Scholar 

  • Design and Development of Biosensors for the Detection of Heavy Metal Toxicity (n.d.) Accessed 26 Mar 2019. https://www.hindawi.com/journals/ijelc/2011/343125/

  • Desnick RJ, Astrin KH, Schuchman EH (2019) Therapies for lysosomal storage diseases. In: Emery and Rimoin’s principles and practice of medical genetics and genomics. Elsevier, San Diego, pp 205–227

    Chapter  Google Scholar 

  • Distaso MA, Tran H, Ferrer M, Golyshin PN (2017) Metagenomic mining of enzyme diversity. In: Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Cham, pp 245–269

    Chapter  Google Scholar 

  • Doubnerová V (2012) Utilization of enzymes in biochemistry and analytical biochemistry. Biochem Anal Biochem 1:e110

    Article  CAS  Google Scholar 

  • Dubey RJ, Kumar D, Agrawala TC, Pusp P (2011) Isolation, production, purification, assay and characterization of fibrinolytic enzymes (Nattokinase, Streptokinase and Urokinase) from bacterial sources. Afr J Biotechnol 10(8):1408–1420

    CAS  Google Scholar 

  • Dumorné K, Córdova DC, Astorga-Eló M, Renganathan P (2017) Extremozymes: a potential source for industrial applications. J Microbiol Biotechnol 27(4):649–659

    Article  PubMed  CAS  Google Scholar 

  • Eckfeldt JH, Levitt MD (1989) Diagnostic enzymes for pancreatic disease. Clin Lab Med 9(4):731–743

    Article  CAS  PubMed  Google Scholar 

  • Economou A, Karapetis SK, Nikoleli G-P, Nikolelis DP, Bratakou S, Varzakas TH (2017) Enzyme-based sensors. In: Advances in food diagnostics. Wiley-Blackwell Chichester, Chichester, pp 231–250

    Chapter  Google Scholar 

  • Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NM (2016) Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 27(3):283–297. https://doi.org/10.1080/13543776.2017.1254194

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Arrojo L, Guazzaroni M-E, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733

    Article  PubMed  CAS  Google Scholar 

  • Fini ME, Girard MT, Matsubara M (1992) Collagenolytic/gelatinolytic enzymes in corneal wound healing. Acta Ophthalmol 70(S202):26–33

    Article  Google Scholar 

  • Grisewood MJ (2013) OptZyme: a computational tool for altering enzymatic specificity. Pennsylvania State University, University Park

    Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison RG Jr, Krais JJ (2018) Enzyme conjugate and prodrug cancer therapy, issued June 2018

    Google Scholar 

  • Hashemi Goradel N, Mirzaei H, Sahebkar A, Poursadeghiyan M, Masoudifar A, Malekshahi ZV, Negahdari B (2018) Biosensors for the detection of environmental and urban pollutions. J Cell Biochem 119(1):207–212

    Article  CAS  PubMed  Google Scholar 

  • Hauber I, Hofmann-Sieber H, Chemnitz J, Dubrau D, Chusainow J, Stucka R, Hartjen P, Schambach A, Ziegler P, Hackmann K (2013) Highly significant antiviral activity of HIV-1 LTR-specific Tre-recombinase in humanized mice. PLoS Pathog 9(9):e1003587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412

    Article  CAS  PubMed  Google Scholar 

  • Ji YB, Wang SW, Yu M, Ru X, Wei C, Zhu HJ, Li ZY, Zhao H, Qiao AN, Guo SZ (2018) Research status and development of application fields in enzyme technology. In: IOP conference series: materials science and engineering, vol 292. Publishing, IOP, p 012120

    Google Scholar 

  • Jung K, Schulze B-D, Sydow K (1987) Diagnostic significance of different urinary enzymes in patients suffering from chronic renal diseases. Clin Chim Acta 168(3):287–295

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Sekhon BS (2012) Enzymes as drugs: an overview. J Pharm Educ Res 3(2):1

    Google Scholar 

  • Kunamneni A, Ogaugwu C, Goli D (2018) Enzymes as therapeutic agents. In: Enzymes in human and animal nutrition. Elsevier, San Diego, pp 301–312

    Chapter  Google Scholar 

  • Kwaan HC, Mazar AP, McMahon BJ (2013) The apparent UPA/PAI-1 paradox in cancer: more than meets the eye. In: Seminars in thrombosis and hemostasis, vol 39. Thieme Medical Publishers, New York, pp 382–391

    Google Scholar 

  • Lehouritis P, Springer C, Tangney M (2013) Bacterial-directed enzyme prodrug therapy. J Control Release 170(1):120–131

    Article  CAS  PubMed  Google Scholar 

  • Lokko Y, Heijde M, Schebesta K, Scholtès P, Van Montagu M, Giacca M (2018) Biotechnology and the bioeconomy – towards inclusive and sustainable industrial development. New Biotechnol 40:5–10

    Article  CAS  Google Scholar 

  • Mane P, Tale V (2015) Overview of microbial therapeutic enzymes. Int J Curr Microbiol App Sci 4(4):17–26

    CAS  Google Scholar 

  • Mohanty S, Khasa YP (2019) Enzymes as therapeutic agents in human disease management. In: High value fermentation products: human health, vol 1. Wiley-Scrivener, Hoboken, pp 225–263

    Google Scholar 

  • Mokhtariye A, Hagh-Nazari L, Varasteh A-R, Keyfi F (2019) Diagnostic methods for lysosomal storage disease. Rep Biochem Mol Biol 7(2):119–128

    PubMed  PubMed Central  Google Scholar 

  • Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II) – Chemical Society Reviews (RSC Publishing) (n.d.) Accessed 26 Mar 2019. https://pubs.rsc.org/en/content/articlelanding/2019/cs/c8cs00457a#!divAbstract

  • Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HMN (2018) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176

    Article  Google Scholar 

  • Priyadarshini P, Singh B (2019) Computational resources and techniques in enzyme research. In: Advances in enzyme technology. Elsevier, pp 453–468

    Google Scholar 

  • Raja MMM, Raja A, Imran MM, Santha AMI, Devasena K (2011) Enzymes application in diagnostic prospects. Biotechnology 10(1):51–59

    Article  CAS  Google Scholar 

  • Rosado JL, Solomons NW, Lisker R, Bourges H, Anrubio G, García A, Perez-Briceño R, Aizupuru E (1984) Enzyme replacement therapy for primary adult lactase deficiency: effective reduction of lactose malabsorption and milk intolerance by direct addition of β-galactosidase to milk at mealtime. Gastroenterology 87(5):1072–1082

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Singu B, Annapure U (2018) Role of enzymes in pharmaceutical and biotechnology industries. In: Enzymes in food technology. Springer, pp 167–185

    Google Scholar 

  • Taylor S (2011) Advances in food and nutrition research, vol 54. Elsevier, Amsterdam

    Google Scholar 

  • Vashist S, Sharma R (2018) Why settle for mediocre, when extremophiles exist? In: Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Singapore, pp 435–451

    Google Scholar 

  • Vittaladevaram V (2017) Fermentative production of microbial enzymes and their applications: present status and future prospects. J Appl Biol Biotechnol 5(04):090–094

    CAS  Google Scholar 

  • Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224

    Article  CAS  Google Scholar 

  • Werner M, Brooks SH, Mohrbacher RJ, Wasserman AG (1982) Diagnostic performance of enzymes in the discrimination of myocardial infarction. Clin Chem 28(6):1297–1302

    Article  CAS  PubMed  Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20(5):636–647

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y-C, Mei L-P, Ruan Y-F, Zhang N, Zhao W-W, Xu J-J, Chen H-Y (2019) Enzyme-based biosensors and their applications. In: Advances in enzyme technology. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayana A. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, N.V., Patil, N.A. (2020). Enzyme Technology Prospects and Their Biomedical Applications. In: Vyas, R. (eds) Advances in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2063-1_9

Download citation

Publish with us

Policies and ethics