Skip to main content

Applications of Deep Learning in Drug Discovery

  • Chapter
  • First Online:
Advances in Bioengineering

Abstract

Armed with advances in computational resources and high data throughput, artificial intelligence techniques have achieved remarkable success in diverse application areas in past decade. In recent years the field of pharmaceutical drug discovery has seen upsurge of deep learning applications that go beyond bioactivity predictive models and aid in various facets of drug discovery process. One of the biggest strengths of deep neural networks is their ability to learn from complex nonlinear data without explicit need for handpicking the features. This chapter aims to provide an overview of deep learning methods and their applications in the drug design field. The chapter begins by introducing concepts of machine learning, artificial neural network, and deep learning. Advances in deep neural architecture are discussed with examples of convolutional neural networks (CNNs), recurrent neural networks (RNNs), variational autoencoders (VAEs), and generative adversarial networks (GANs). Application examples of these architectures such as RNN-based variational autoencoders for de novo molecular design, natural language processing, use of adversarial network in GANs for obtaining valid molecular designs, bioactivity prediction, and image-based profiling of bioassays using CNNs are reviewed to bring out variety of drug design challenges being addressed using deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug discovery with one-shot learning. ACS Cent Sci 3(4):283–293

    Article  CAS  Google Scholar 

  • Bjerrum EJ (2017) Smiles enumeration as data augmentation for neural network modeling of molecules. arXiv preprint arXiv:170307076

    Google Scholar 

  • Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2018) Application of generative autoencoder in de novo molecular design. Mol Inf 37(1–2):1700123

    Article  Google Scholar 

  • Caffe (2019) Caffe. Available at: http://caffe.berkeleyvision.org/

  • Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ (2018) Next-generation machine learning for biological networks. Cell 173(7):1581–1592

    Article  CAS  Google Scholar 

  • Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Discov today 23(6):1241–1250

    Article  Google Scholar 

  • Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170387

    Article  Google Scholar 

  • DeepChem (2019) DeepChem. https://deepchem.io/

  • Ferrari A, Lombardi S, Signoroni A (2015) Bacterial colony counting by convolutional neural networks. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 7458–7461

    Google Scholar 

  • Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inf 35(1):3–14

    Article  CAS  Google Scholar 

  • Goh GB, Hodas NO, Siegel C, Vishnu A (2017a) Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties. arXiv preprint arXiv:171202034

    Google Scholar 

  • Goh GB, Hodas NO, Vishnu A (2017b) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307

    Article  CAS  Google Scholar 

  • Goh GB, Siegel C, Vishnu A, Hodas NO, Baker N (2017c) Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed qsar/qspr models. arXiv preprint arXiv:170606689

    Google Scholar 

  • Goh GB, Siegel C, Vishnu A, Hodas N, Baker N (2018) How much chemistry does a deep neural network need to know to make accurate predictions? In: 2018 IEEE Winter conference on applications of computer vision (WACV), IEEE, pp 1340–1349

    Google Scholar 

  • Gomes J, Ramsundar B, Feinberg EN, Pande VS (2017) Atomic convolutional networks for predicting protein-ligand binding affinity. arXiv preprint arXiv:170310603

    Google Scholar 

  • Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276

    Article  Google Scholar 

  • Graves A (2013) Generating sequences with recurrent neural networks. arXiv preprint arXiv:13080850

    Google Scholar 

  • Graves A, Mohamed AR, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, IEEE, pp 6645–6649

    Google Scholar 

  • Hartenfeller M, Schneider G (2011) Enabling future drug discovery by de novo design. Wiley Interdiscip Rev Comput Mol Sci 1(5):742–759

    Article  CAS  Google Scholar 

  • Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14(9):3098–3104

    Article  CAS  Google Scholar 

  • Karthikeyan M, Vyas R (2014) Machine learning methods in chemoinformatics for drug discovery. In: Practical chemoinformatics. Springer, New York, pp 133–194

    Chapter  Google Scholar 

  • Karthikeyan M, Glen RC, Bender A (2005) General melting point prediction based on a diverse compound data set and artificial neural networks. J Chem Inf Model 45(3):581–590

    Article  CAS  Google Scholar 

  • Keras (2019) Keras. Available at: https://keras.io/

  • Kraus OZ, Ba JL, Frey BJ (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12):i52–i59

    Article  CAS  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst:1097–1105

    Google Scholar 

  • Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  CAS  Google Scholar 

  • Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al. (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

    Google Scholar 

  • Lu X, Tsao Y, Matsuda S, Hori C (2013) Speech enhancement based on deep denoising autoencoder. In: Interspeech, pp 436–440

    Google Scholar 

  • Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13(5):1445–1454

    Article  CAS  Google Scholar 

  • Murugan P (2018) Facial information recovery from heavily damaged images using generative adversarial network-part 1. arXiv preprint arXiv:180808867

    Google Scholar 

  • Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Proces 14:1360–1371

    Article  Google Scholar 

  • Pereira JC, Caffarena ER, dos Santos CN (2016) Boosting docking-based virtual screening with deep learning. J Chem Inf Model 56(12):2495–2506

    Article  CAS  Google Scholar 

  • PyTorch (2019) PyTorch. Available at: http://pytorch.org/

  • Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR (2017) Protein–ligand scoring with convolutional neural networks. J Chem Inf Model 57(4):942–957. https://doi.org/10.1021/acs.jcim.6b00740, pMID: 28368587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241

    Google Scholar 

  • Sak H, Senior A, Beaufays F (2014) Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:14021128

    Google Scholar 

  • Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, p 4

    Google Scholar 

  • Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17(2):97

    Article  CAS  Google Scholar 

  • Segler MH, Kogej T, Tyrchan C, Waller MP (2017) Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4(1):120–131

    Article  Google Scholar 

  • Semeniuta S, Severyn A, Barth E (2017) A hybrid convolutional variational autoencoder for text generation. arXiv preprint arXiv:170202390

    Google Scholar 

  • Åšledź P, Caflisch A (2018) Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol 48:93–102

    Article  Google Scholar 

  • Smith JS, Roitberg AE, Isayev O (2018) Transforming computational drug discovery with machine learning and AI. ACS Med Chem Lett 9(11):1065–1069

    Article  CAS  Google Scholar 

  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  • TensorFlow (2019) TensorFlowâ„¢. Available at: https://www.tensorflow.org/

  • Theano (2019) Theano. Available at: http://deeplearning.net/software/theano/

  • Topliss J (2012) Quantitative structure-activity relationships of drugs, vol 19. Elsevier, Amsterdam

    Google Scholar 

  • Venugopalan S, Xu H, Donahue J, Rohrbach M, Mooney R, Saenko K (2014) Translating videos to natural language using deep recurrent neural networks. arXiv preprint arXiv:14124729

    Google Scholar 

  • Wallach I, Dzamba M, Heifets A (2015) Atomnet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint arXiv:151002855

    Google Scholar 

  • Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regularization of neural networks using dropconnect. In: International conference on machine learning, pp 1058–1066

    Google Scholar 

  • Yuan W, Jiang D, Nambiar DK, Liew LP, Hay MP, Bloomstein J, Lu P, Turner B, Le QT, Tibshirani R et al (2017) Chemical space mimicry for drug discovery. J Chem Inf Model 57(4):875–882

    Article  CAS  Google Scholar 

  • Zhang L, Tan J, Han D, Zhu H (2017) From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today 22(11):1680–1685

    Article  Google Scholar 

Download references

Acknowledgments

Author would like to thank Vinayak Ghaisas, Director, and Renu Vyas, Head, MIT School of Bioengineering Sciences and Research, Pune, for the infrastructure and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarode, K.D. (2020). Applications of Deep Learning in Drug Discovery. In: Vyas, R. (eds) Advances in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2063-1_4

Download citation

Publish with us

Policies and ethics