Skip to main content

Advancement in Soil Testing with New Age Sensors: Indian Perspective

  • Chapter
  • First Online:
Soil Analysis: Recent Trends and Applications

Abstract

Soil is one of the crucial resources for maintaining a sustainable future of Indian agriculture for food security. It is a heterogeneous dynamic body influenced by natural and anthropogenic agents; hence, its spatial and temporal variability is inevitable. The soil health card scheme introduced by the Govt. of India aims to issue soil card to farmers which will carry crop-wise recommendations of nutrients and fertilizers for the individual farms for improved productivity through judicious use of inputs based on the soil health card for the area. All soil samples are to be tested under this scheme which includes about 121 million agricultural fields across India. The capacity of the soil testing laboratories far lags behind the requirement that is coming under the soil health card scheme. The Government aims to use this card to 14 crore farmers across India. In general, precise mapping of soil using conventional analysis is laborious and time consuming. Combining this challenge with the ambitious soil health card scheme makes it quite a challenging task to accomplish. Advanced sensing techniques such as portable X-ray fluorescence spectrometry (PXRF) and diffuse reflectance spectroscopy (DRS) can be used to help this challenge by developing soil spectral libraries. Soil spectral library contains spectral signatures of specific soil types that can be linked to a range of spectral properties. With the development of empirical models for different nutrients of benchmark soils, spectral libraries can help rapid analysis of thousands of samples in a short time. This chapter will give a basic overview of PXRF, DRS, and other commercially available soil sensors with their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Martínez V, Cotton J (2017) Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil. Biol Fertil Soils 53:533–546. https://doi.org/10.1007/s00374-017-1192-2

    Article  Google Scholar 

  • Aldabaa AAA, Weindorf DC, Chakraborty S, Sharma A, Li B (2015) Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 239-240:34–46. https://doi.org/10.1016/j.geoderma.2014.09.011

    Article  CAS  Google Scholar 

  • Baumgardner MF, Kristof S, Johannsen CJ, Zachary A (1969) Effects of organic matter on the multispectral properties of soils. Purdue University Agr Exp Station J 3939:413–422

    Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994) Water-stable aggregates and organic matter fractions in conventional- and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Blankinship JC, Fonte SJ, Six J, Schimel JP (2016) Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem. Geoderma 272:39–50

    Article  Google Scholar 

  • Cano A, Nunez A, Acosta-Martinez V, Schipanski M, Ghimire R, Rice C, West C (2018) Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma 328:109–118. https://doi.org/10.1016/j.geoderma.2018.04.027

    Article  Google Scholar 

  • Chakraborty S, Das BS, Ali N, Li B, Sarathjith MC, Majumder K, Ray DP (2014) Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning. Waste Manag 34:623–631

    Article  CAS  Google Scholar 

  • Chakraborty S, Weindorf DC, Paul S, Ghosh B, Li B, Ali MN, Ghosh RK, Ray DP, Majumdar K (2015) Diffuse reflectance spectroscopy for monitoring lead in landfill agricultural soils of India. Geoderma Reg 5:77–85

    Article  Google Scholar 

  • Chakraborty S, Weindorf DC, Weindorf CA, Das BS, Li B, Duda B, Pennington S, Ortiz R (2017a) Semi-quantitative evaluation of secondary carbonates via portable X-ray fluorescence spectrometry. Soil Sci Soc Am J 81:844–852

    Article  CAS  Google Scholar 

  • Chakraborty S, Li B, Deb S, Paul S, Weindorf DC, Das BS (2017b) Predicting soil arsenic pools by visible near infrared diffuse reflectance spectroscopy. Geoderma 296:30–37

    Article  CAS  Google Scholar 

  • Chakraborty S, Weindorf DC, Deb S, Li B, Paul S, Choudhury A, Ray DP (2017c) Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 289:72–81

    Article  CAS  Google Scholar 

  • Chakraborty S, Li B, Weindorf DC, Morgan CLS (2019a) External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra. Geoderma 337:65–75

    Article  CAS  Google Scholar 

  • Chakraborty S, Li B, Weindorf DC, Deb S, Acree A, De P, Panda P (2019b) Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India. Geoderma 338:5–13

    Article  CAS  Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for Assessing Soil Quality, vol 49. Soil Science Society of America, Special Publication, Madison, pp 25–37

    Google Scholar 

  • Escadafal R, Girard M, Courault D (1989) Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sens Environ 27:37–46

    Article  Google Scholar 

  • Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, Pallasser R, Pozza L (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241–242:180–209

    Article  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Koch J, Chakraborty S, Li B, Moore-Kucera J, van Deventer P, Daniell A, Faul C, Man T, Pearson D, Duda B, Weindorf CA, Weindorf DC (2017) Proximal sensor analysis of mine tailings in South Africa: an exploratory study. J Geochem Explor 181:45–57

    Article  CAS  Google Scholar 

  • Li B, Chakraborty S, Godoy M, Kusi NYO, Weindorf DC (2018) Compost cation exchange capacity via portable X-ray fluorescence (PXRF) spectrometry. Compost Sci Util 26:271. https://doi.org/10.1080/1065657X.2018.1522280

    Article  Google Scholar 

  • Magdoff F, Van Es H (2000) Building soils for better crops. Sustainable Agriculture Network, Beltsville, p 230

    Google Scholar 

  • McGladdery C, Weindorf DC, Chakraborty S, Li B, Paulette L, Podar D, Pearson D, Kusi NYO, Duda B (2018) Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry. J Environ Manag 210:21–225

    Article  Google Scholar 

  • Morgan CLS, Waiser TH, Brown DJ, Hallmark CT (2009) Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 151(3–4):249–256

    Article  CAS  Google Scholar 

  • Mulders M (1987) Remote sensing in soil science, Development in soil science. Elsevier, Amsterdam, p 379

    Google Scholar 

  • Pearson D, Chakraborty S, Duda B, Li B, Weindorf DC, Deb S, Brevik E, Ray DP (2017) Water analysis via portable X-ray fluorescence spectrometry. J Hydrol 544:172–179

    Article  CAS  Google Scholar 

  • Pearson D, Weindorf DC, Chakraborty S, Li B, Koch J, Van Deventer P, de Wet J, Yaw Kusi N (2018) Analysis of metal-laden water via portable X-ray fluorescence spectrometry. J Hydrol 561:267–276

    Article  CAS  Google Scholar 

  • Raj A, Chakraborty S, Duda BM, Weindorf DC, Li B, Roy S, Sarathjith MC, Das BS (2018) Soil mapping via diffuse reflectance spectroscopy based variable indicators: an ordered predictor selection approach. Geoderma 314:146–159

    Article  CAS  Google Scholar 

  • Rawal A, Chakraborty S, Li B, Lewis K, Godoy M, Paulette L, Weindorf DC (2019) Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma 338:375–382

    Article  Google Scholar 

  • Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H (2003) Effect of soil organic carbon on soil water retention. Geoderma 116:61–76

    Article  CAS  Google Scholar 

  • Rossel RAV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  Google Scholar 

  • Sharma A, Weindorf DC, Man T, Aldabaa A, Chakraborty S (2014) Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH). Geoderma 232-234:141–147

    Article  CAS  Google Scholar 

  • Sharma A, Weindorf DC, Wang D, Chakraborty S (2015) Characterizing soils via portable X-ray fluorescence spectrometry: 4. Cation exchange capacity (CEC). Geoderma 239-240:130–134

    Article  CAS  Google Scholar 

  • Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G (2002) Surface soil physical properties after twelve years of dryland no till management. Soil Sci Soc Am J 66:1296–1303

    Article  CAS  Google Scholar 

  • Sheffield K, Morse-McNabb E (2015) Using satellite imagery to asses trends in soil and crop productivity across landscapes. IOP Conf Ser Earth Environ Sci 25:012013. https://doi.org/10.1088/1755-1315/25/1/012013

    Article  Google Scholar 

  • Soil Survey Staff (2014) Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42. Version 5.0. USDA-NRCS, Lincoln, NE

    Google Scholar 

  • Srivastava R, Sethi M, Yadav RK, Bundela DS, Singh M, Chattaraj S (2017) Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana, India. J Indian Soc Remote Sensing 45(2):307–315

    Article  Google Scholar 

  • Stiglitz R, Mikhailova E, Post C, Schlautman M, Sharp J (2016) Evaluation of an in expensive sensor to measure soil color. Comput Electron Agric 121:141–148

    Article  Google Scholar 

  • Swanhart S, Weindorf DC, Chakraborty S, Bakr N, Zhu Y, Nelson C, Shook K, Acree A (2014) Soil salinity measurement via portable X-ray fluorescence spectrometry. Soil Sci 179:417–423

    Article  CAS  Google Scholar 

  • US-EPA (2007) Method 6200: field portable X-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. https://www.epa.gov/sites/production/files/2015-12/documents/6200.pdf (verified 12 Dec 2018)

  • Varvel GE, Schlemmer MR, Schepers JS (1999) Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels. Precis Agric 1:291–300

    Article  Google Scholar 

  • Vibhute AD, Kale KV, Mehrotra SC, Dhumal RK, Nagne AD (2018) Determination of soil physicochemical attributes in farming sites through visible, near-infrared diffuse reflectance spectroscopy and PLSR modeling. Ecol Process 7:26

    Article  Google Scholar 

  • Wang D, Chakraborty S, Weindorf DC, Li B, Sharma A, Paul S, Ali N (2015) Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen. Geoderma 243-244:157–167

    Article  CAS  Google Scholar 

  • Weindorf DC, Chakraborty S (2016) Portable X-ray fluorescence spectrometry analysis of soils. Methods Soil Anal. Available online at https://dl.sciencesocieties.org/publications/msa/abstracts/1/1/methods-soil.2015.0033 (verified 17 Aug 2018)

  • Weindorf DC, Herrero J, Bakr N, Swanhart S (2013a) Direct soil gypsum quantification via portable X-ray fluorescence spectrometry. Soil Sci Soc Am J 77:2071–2077

    Article  CAS  Google Scholar 

  • Weindorf DC, Paulette L, Man T (2013b) On-site assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environ Pollut 182:92–100

    Article  CAS  Google Scholar 

  • Weindorf DC, Chakraborty S, Aldabaa A, Paulette L, Corti G, Cocco S, Michéli E, Wang D, Li B, Man T, Sharma A, Person T (2015) Lithologic discontinuity identification via proximal sensors. Soil Sci Soc Am J 79(6):1704–1716

    Article  CAS  Google Scholar 

  • Weindorf DC, Chakraborty S, Li B, Deb S, Singh A, Kusi NY (2018) Compost salinity assessment via portable X-ray fluorescence (PXRF) spectrometry. Waste Manag 78:158–163

    Article  CAS  Google Scholar 

  • Zhu Y, Weindorf DC, Zhang W (2011) Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 167-168:167–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somsubhra Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swetha, R.K., Mukhopadhyay, S., Chakraborty, S. (2020). Advancement in Soil Testing with New Age Sensors: Indian Perspective. In: Rakshit, A., Ghosh, S., Chakraborty, S., Philip, V., Datta, A. (eds) Soil Analysis: Recent Trends and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-2039-6_4

Download citation

Publish with us

Policies and ethics