Skip to main content

Microbial Bioremediation and Biodegradation of Hydrocarbons, Heavy Metals, and Radioactive Wastes in Solids and Wastewaters

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

In this era of rapid industrialization, there is an increase in humongous use of nonrenewable resources which generate wastes in terms of hydrocarbons, heavy metals, and radioactive wastes. Increase in the wastes generated is a great threat to the environment as well as human life. The hydrocarbon industry, mining industry, and increase in the use of radioactive sources of energy created enormous toxic heaps, which are not degradable for years to come. No novel technology has been developed to rapidly tackle these critical masses of toxic wastes. Underground dumping and deep-sea disposal are the only treatment methods are being carried out. The great marine oil spill in the Mexican Gulf and wastes of nuclear warheads are a critical threat to humankind. The primary focus of the chapter is the treatment of these wastes through different biological processes and routes. A huge number of treatment studies on different wastes utilizaing biological methods are being done. Less heed is given to wastes such as hydrocarbon wastes, heavy metals, and more specifically radioactive wastes. Major challenges in the treatment of these wastes are that they have slower rate of degradation and handling of these kinds of wastes becomes a major roadblock. Chemolithotrophs and chemoorganotrophs are the major microorganisms which utilize chemical energy for their functioning. Facultative anaerobes and obligate anaerobes are known for their high COD treatment efficiency which is highly effective in treatment of such category of wastes. This chapter focuses on the use of these microorganisms for the treatment of the three main kinds of wastes, i.e., hydrocarbons, heavy metals, and radioactive wastes from solids and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23(3):183–188

    Google Scholar 

  • Bajpai U, Kuhad RC, Khanna S (1998) Mineralization of [14C] octadecane by Acinetobacter calcoaceticus S19. Can J Microbiol 44(7):681–686

    CAS  Google Scholar 

  • Bannister W (1992) The biological chemistry of the elements: the inorganic chemistry of life. Biochem Educ 20:62–63

    Google Scholar 

  • Barajas-Aceves M (2005) Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Bioresour Technol 96(12):1405–1414

    CAS  Google Scholar 

  • Beolchini F, Ubaldini S, Passariello B, Gül N, Türe D, Vegliò F, Danovaro R, Dell’Anno A (2007) Bioremediation of dredged sediments polluted by heavy metals. In: Advanced materials research, vol 20. Trans Tech, pp 307–310

    Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram [Vigna mungo (L.) Hepper]. Bull Environ Contam Toxicol 74(6):1126–1133

    CAS  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Bradley PM, Chapelle FH (1995) Rapid toluene mineralization by aquifer microorganisms at Adak, Alaska: implications for intrinsic bioremediation in cold environments. Environ Sci Technol 29(11):2778–2781

    CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4(3):331–338

    CAS  Google Scholar 

  • Chander K, Klein T, Eberhardt U, Joergensen R (2002) Decomposition of carbon-14-labelled wheat straw in repeatedly fumigated and non-fumigated soils with different levels of heavy metal contamination. Biol Fertil Soils 35(2):86–91

    CAS  Google Scholar 

  • Chen CI, Taylor RT (1995) Thermophilic biodegradation of BTEX by two Thermus species. Biotechnol Bioeng 48(6):614–624

    CAS  Google Scholar 

  • Chen CI, Taylor RT (1997) Thermophilic biodegradation of BTEX by two consortia of anaerobic bacteria. Appl Microbiol Biotechnol 48(1):121–128

    CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Chowdhury BA, Chandra RK (1986) Biological and health implications of toxic heavy metal and essential trace element interactions. Prog Food Nutr Sci 11(1):55–113

    Google Scholar 

  • Coates JD, Bhupathiraju VK, Achenbach LA, Mclnerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe (III)-reducers. Int J Syst Evol Microbiol 51(2):581–588

    CAS  Google Scholar 

  • Cunningham CJ, Philp JC (2000) Comparison of bioaugmentation and biostimulation in ex situ treatment of diesel contaminated soil. Land Contam Reclam 8(4):261–269

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:941810

    Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2012) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Google Scholar 

  • de la Cueva SC, Rodríguez CH, Cruz NOS, Contreras JAR, Miranda JL (2016) Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water Air Soil Pollut 227(3):91

    Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Evans GM, Furlong JC (2003) Environmental biotechnology: theory and application. J Air Waste Manage Assoc 53(11):1418–1419

    Google Scholar 

  • Franchi E, Agazzi G, Rolli E, Borin S, Marasco R, Chiaberge S, Conte A, Filtri P, Pedron F, Rosellini I, Barbafieri M (2016) Exploiting hydrocarbon-degrading indigenous bacteria for bioremediation and phytoremediation of a multicontaminated soil. Chem Eng Technol 39(9):1676–1684

    CAS  Google Scholar 

  • Gawali Ashruta A, Nanoty V, Bhalekar U (2014) Biosorption of heavy metals from aqueous solution using bacterial EPS. Int J Life Sci 2:373–377

    Google Scholar 

  • Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris SH, Sublette KL, Suflita JM (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 33(15):2550–2560

    CAS  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147

    CAS  Google Scholar 

  • Halder S (2014) Bioremediation of heavy metals through fresh water microalgae: a review. Scholars Acad J Biosci 2(11):825–830

    Google Scholar 

  • Harvey LJ, McArdle HJ (2008) Biomarkers of copper status: a brief update. Br J Nutr 99(S3):S10–S13

    CAS  Google Scholar 

  • Hou W, Ma Z, Sun L, Han M, Lu J, Li Z, Mohamad OA, Wei G (2013) Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+. J Hazard Mater 261:614–620

    CAS  Google Scholar 

  • Hubert A, Wenzel KD, Engewald W, Schüürmann G (2001) Accelerated solvent extraction-more efficient extraction of POPs and PAHs from real contaminated plant and soil samples. Rev Anal Chem 20(2):101–144

    CAS  Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7(2):177–187

    CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66(9):1670–1676

    CAS  Google Scholar 

  • Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh J (2013) Heavy metals resistance by bacterial strains. Ann Biol Res 4(2):60–63

    Google Scholar 

  • Jain PK, Bajpai V (2012) Biotechnology of bioremediation-a review. Int J Environ Sci 3(1):535–549

    CAS  Google Scholar 

  • Jain PK, Gupta VK, Gaur RK, Bajpai V, Gautam N, Modi DR (2010) Fungal enzymes: potential tools of environmental processes. Lambert Academic, Saarbrücken, pp 44–56

    Google Scholar 

  • Juteau P, Rho D, Larocque R, LeDuy A (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl Microbiol Biotechnol 52(6):863–868

    CAS  Google Scholar 

  • Karmakar S, Kundu AP, Kundu K, Kundu S (2012) Microbial treatment of heavy metals, oil, and radioactive contamination in wastewaters, wastewater treatment: advanced processes and technologies. CRC Press (Taylor & Francis Group), Boca Raton, FL, p 185

    Google Scholar 

  • Kumar A, Bisht BS, Joshi VD (2010) Biosorption of heavy metals by four acclimated microbial species. Bacillus spp., pseudomonas spp., staphylococcus spp. and Aspergillus Niger. J Biol Environ Sci 4:97–108

    Google Scholar 

  • Lei Z, Yu T, Ai-Zhong D, Jin-Sheng W (2008) Adsorption of cd (II), Zn (II) by extracellular polymeric substances extracted from waste activated sludge. Water Sci Technol 58(1):195–200

    Google Scholar 

  • Li Q, Csetenyi L, Gadd GM (2014) Biomineralization of metal carbonates by Neurospora crassa. Environ Sci Technol 48(24):14409–14416

    CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (2000) Biological reduction and removal of Np (V) by two microorganisms. Environ Sci Technol 34(7):1297–1301

    CAS  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1(1):35

    CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993a) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113(1–2):41–53

    CAS  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993b) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59(11):3572–3576

    CAS  Google Scholar 

  • Lugowski AJ, Palmateer GA, Boose TR and Merriman JE, Uniroyal Chemical Ltd (1997) Biodegradation process for de-toxifying liquid streams. U.S. Patent 5,656,169

    Google Scholar 

  • Macaskie LE, Lloyd JR, Thomas RAP, Tolley MR (1996) The use of micro-organisms for the remediation of solutions contaminated with actinide elements, other radionuclides, and organic contaminants generated by nuclear fuel cycle activities. Nucl Energy 35(4):257–271

    CAS  Google Scholar 

  • Macaulay BM (2015) Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13(1):247–262

    Google Scholar 

  • Mangwani N, Shukla SK, Rao TS, Das S (2014) Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B: Biointerfaces 114:301–309

    CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5(2):73–83

    CAS  Google Scholar 

  • May SW, Katopodis AG (1990) Hydrocarbon monooxygenase system of pseudomonas oleovorans. In: Methods in enzymology, vol 188. Academic Press, pp 3–9

    Google Scholar 

  • Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27(1):4–16

    CAS  Google Scholar 

  • Morby AP, Turner JS, Huckle JW, Robinson NJ (1993) SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res 21(4):921–925

    CAS  Google Scholar 

  • Müller PJ, Kirst G, Ruhland G, Von Storch I, Rosell-Melé A (1998) Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N-60° S). Geochim Cosmochim Acta 62(10):1757–1772

    Google Scholar 

  • Nelson DM, Lovett MB (1978) Oxidation state of plutonium in the Irish Sea. Nature 276(5688):599

    CAS  Google Scholar 

  • Ogundele DT, Adio AA, Oludele OE (2015) Heavy metal concentrations in plants and soil along heavy traffic roads in north Central Nigeria. J Environ Anal Toxicol 5(6):1

    Google Scholar 

  • Olaniran A, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228

    Google Scholar 

  • Olukanni DO, Agunwamba JC, Ugwu EI (2014) Biosorption of heavy metals in industrial wastewater using micro-organisms (Pseudomonas aeruginosa). Am J Sci Ind Res 5(2):81–87

    Google Scholar 

  • Onysko KA, Budman HM, Robinson CW (2000) Effect of temperature on the inhibition kinetics of phenol biodegradation by pseudomonas putida Q5. Biotechnol Bioeng 70(3):291–299

    CAS  Google Scholar 

  • Panwichian S, Kantachote D, Wittayaweerasak B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14(4):2–2

    Google Scholar 

  • Pereira S, Micheletti E, Zille A, Santos A, Moradas-Ferreira P, Tamagnini P, De Philippis R (2011) Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 157(2):451–458

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    CAS  Google Scholar 

  • Pillis LJ and Davis LT (1985) Microorganism capable of degrading phenolics. Patent Number US Patent 4, 556, 638

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  Google Scholar 

  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 10(2):61–75

    CAS  Google Scholar 

  • Salleh AB, Ghazali FM, Rahman RNZA, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2:411–425

    CAS  Google Scholar 

  • Saraswat S (2014) Patent analysis on bioremediation of environmental pollutants. J Bioremed Biodegr 5(251):1–6

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    CAS  Google Scholar 

  • Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012) Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res 149(1):86–96

    CAS  Google Scholar 

  • Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxic Environ Health A 73(2–3):114–127

    CAS  Google Scholar 

  • Taub Frieda B (2004) Fish 430 lectures (biological impacts of pollutants on aquatic organisms). University of Washington College of Ocean and Fishery Sciences, Seattle

    Google Scholar 

  • Tchounwou PB, Newsome C, Williams J and Glass K (2008) Copper-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. In: Metal ions in biology and medicine: proceedings of the... International Symposium on Metal Ions in Biology and Medicine held...= Les ions metalliques en biologie et en medecine:... Symposium international sur les ions metalliques (Vol. 10, p. 285). NIH Public Access

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Google Scholar 

  • Thapa B, Kc AK, Ghimire A (2012) A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ J Sci Eng Technol 8(1):164–170

    Google Scholar 

  • Turner JS, Robinson NJ, Gupta A (1995) Construction of Zn 2+/cd 2+−tolerant cynadobacteria with a modified metallothionein divergon: further analysis of the function and regulation ofsmt. J Ind Microbiol 14(3–4):259–264

    CAS  Google Scholar 

  • Vasudevan P, Padmavathy V, Tewari N, Dhingra SC (2001) Biosorption of heavy metal ions. J Sci Indust Res 60(2):112–120

    CAS  Google Scholar 

  • Verma N, Kaur G (2016) Trends on biosensing systems for heavy metal detection. In: Comprehensive analytical chemistry, vol 74. Elsevier, pp 33–71

    Google Scholar 

  • Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Technol 5:179–182

    CAS  Google Scholar 

  • Wayne GL, Ming-Ho Y, Raton CPB (1999) Introduction to environmental toxicology: impacts of chemicals upon ecological systems. J Ecotoxicol 9(3):231–232

    Google Scholar 

  • WHO (2000) Adverse health effects of heavy metals in children. In: Children’s health and the environment WHO training package for the health sector world. World Health Organization, Geneva

    Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a Psychrotrophic Rhodococcussp. Appl Environ Microbiol 64(7):2578–2584

    CAS  Google Scholar 

  • Wright DA, Welbourn P (2002) Environmental toxicology, vol 11. Cambridge University Press, Cambridge

    Google Scholar 

  • Yadav A, Batra NG, Sharma A (2016) Phytoremediation and phytotechnologies. International journal of pure and applied. Bioscience 4(2):327–331

    Google Scholar 

Download references

Acknowledgment

We would like to thank the School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), and MHRD, India, for providing the resources required for the completion of this project. The authors would also like to thank the Institute’s main library for providing tools for proofreading to improve and enhance the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Kundu, S. (2020). Microbial Bioremediation and Biodegradation of Hydrocarbons, Heavy Metals, and Radioactive Wastes in Solids and Wastewaters. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_4

Download citation

Publish with us

Policies and ethics