Skip to main content

Exercise Regulates the Immune System

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

The profound effect of exercise on the normal functioning of the immune system has been well-known. Exercise and immune regulation are interrelated and affect each other. Exercise changes immune regulation by affecting leucocytes, red blood cells, and cytokines, etc. Regular exercise could reduce the risk of chronic metabolic and cardiorespiratory diseases, partially by the anti-inflammatory effects of exercise. However, these effects are also likely to be responsible for the suppressed immunity that make our bodies more susceptible to infections. Here we summarize the known mechanisms by which exercise—both acute and chronic—exerts its immune regulation effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gasteiger G, Rudensky AY (2014) Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14(9):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sattler S (2017) The role of the immune system beyond the fight against infection. Adv Exp Med Biol 1003:3–14

    Article  CAS  PubMed  Google Scholar 

  4. Pan W, Zhu Y, Meng X, Zhang C, Yang Y, Bei Y (2018) Immunomodulation by exosomes in myocardial infarction. J Cardiovasc Transl Res 12(1):28–36

    Article  PubMed  Google Scholar 

  5. Bei Y, Shi C, Zhang Z, Xiao J (2019) Advance for cardiovascular health in China. J Cardiovasc Transl Res 12(3):165–170

    Article  PubMed  Google Scholar 

  6. Peake J (2013) Interrelations between acute and chronic exercise stress and the immune and endocrine systems. In: Constantini N, Hackney A (eds) Endocrinology of physical activity and sport. Contemporary Endocrinology Humana Press, Totowa, NJ, pp 258–280

    Google Scholar 

  7. Nieman DC, Henson DA, Gusewitch G, Warren BJ, Dotson RC, Butterworth DE, Nehlsen-Cannarella SL (1993) Physical activity and immune function in elderly women. Med Sci Sports Exerc 25(7):823–831

    Article  CAS  PubMed  Google Scholar 

  8. Nieman DC, Johanssen LM, Lee JW (1989) Infectious episodes in runners before and after a roadrace. J Sports Med Phys Fitness 29(3):289–296

    CAS  PubMed  Google Scholar 

  9. Nieman DC, Johanssen LM, Lee JW, Arabatzis K (1990) Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness 30(3):316–328

    CAS  PubMed  Google Scholar 

  10. Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol (1985) 103(2):693–699

    Article  CAS  Google Scholar 

  11. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011) Position statement. Part one: immune function and exercise. Exerc Immunol Rev 17:6–63

    PubMed  Google Scholar 

  12. Asimakos A, Toumpanakis D, Karatza MH, Vasileiou S, Katsaounou P, Mastora Z, Vassilakopoulos T (2018) Immune cell response to strenuous resistive breathing: comparison with whole body exercise and the effects of antioxidants. Int J Chron Obstruct Pulmon Dis 13:529–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Lv Y, Li G, Xiao J (2018) MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci 7(4):433–441

    Article  PubMed  PubMed Central  Google Scholar 

  14. Freidenreich DJ, Volek JS (2012) Immune responses to resistance exercise. Exerc Immunol Rev 18:8–41

    PubMed  Google Scholar 

  15. Bigley AB, Simpson RJ (2015) NK cells and exercise: implications for cancer immunotherapy and survivorship. Discov Med 19(107):433–445

    PubMed  Google Scholar 

  16. Robson PJ, Blannin AK, Walsh NP, Castell LM, Gleeson M (1999) Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med 20(2):128–135

    CAS  PubMed  Google Scholar 

  17. Shek PN, Sabiston BH, Buguet A, Radomski MW (1995) Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med 16(7):466–474

    Article  CAS  PubMed  Google Scholar 

  18. Riera Romo M, Perez-Martinez D, Castillo Ferrer C (2016) Innate immunity in vertebrates: an overview. Immunology 148(2):125–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Myrphy K, Travers P, Walport M, Janeway CA (2012) Janeway's Immunobiology, 8th edn. Garland Science, New York

    Google Scholar 

  20. Natale VM, Brenner IK, Moldoveanu AI, Vasiliou P, Shek P, Shephard RJ (2003) Effects of three different types of exercise on blood leukocyte count during and following exercise. Sao Paulo Med J 121(1):9–14

    Article  PubMed  Google Scholar 

  21. Simonson SR, Jackson CG (2004) Leukocytosis occurs in response to resistance exercise in men. J Strength Cond Res 18(2):266–271

    PubMed  Google Scholar 

  22. Ramel A, Wagner KH, Elmadfa I (2003) Acute impact of submaximal resistance exercise on immunological and hormonal parameters in young men. J Sports Sci 21(12):1001–1008

    Article  PubMed  Google Scholar 

  23. Mooren FC, Volker K, Klocke R, Nikol S, Waltenberger J, Kruger K (2012) Exercise delays neutrophil apoptosis by a G-CSF-dependent mechanism. J Appl Physiol (1985) 113(7):1082–1090

    Article  Google Scholar 

  24. Hulmi JJ, Myllymaki T, Tenhumaki M, Mutanen N, Puurtinen R, Paulsen G, Mero AA (2010) Effects of resistance exercise and protein ingestion on blood leukocytes and platelets in young and older men. Eur J Appl Physiol 109(2):343–353

    Article  CAS  PubMed  Google Scholar 

  25. Peake JM, Neubauer O, Walsh NP, Simpson RJ (2017) Recovery of the immune system after exercise. J Appl Physiol (1985) 122(5):1077–1087

    Article  CAS  Google Scholar 

  26. Gleeson M, Bishop NC (2005) The T cell and NK cell immune response to exercise. Ann Transplant 10(4):43–48

    PubMed  Google Scholar 

  27. Michishita R, Shono N, Inoue T, Tsuruta T, Node K (2010) Effect of exercise therapy on monocyte and neutrophil counts in overweight women. Am J Med Sci 339(2):152–156

    Article  PubMed  Google Scholar 

  28. Ihalainen J, Walker S, Paulsen G, Hakkinen K, Kraemer WJ, Hamalainen M, Vuolteenaho K, Moilanen E, Mero AA (2014) Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. Eur J Appl Physiol 114(12):2607–2616

    Article  CAS  PubMed  Google Scholar 

  29. Kraemer WJ, Clemson A, Triplett NT, Bush JA, Newton RU, Lynch JM (1996) The effects of plasma cortisol elevation on total and differential leukocyte counts in response to heavy-resistance exercise. Eur J Appl Physiol Occup Physiol 73(1–2):93–97

    Article  CAS  PubMed  Google Scholar 

  30. Peake JM (2002) Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev 8:49–100

    PubMed  Google Scholar 

  31. McCarthy DA, Macdonald I, Grant M, Marbut M, Watling M, Nicholson S, Deeks JJ, Wade AJ, Perry JD (1992) Studies on the immediate and delayed leucocytosis elicited by brief (30-min) strenuous exercise. Eur J Appl Physiol Occup Physiol 64(6):513–517

    Article  CAS  PubMed  Google Scholar 

  32. Ortega E, Collazos ME, Maynar M, Barriga C, De la Fuente M (1993) Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur J Appl Physiol Occup Physiol 66(1):60–64

    Article  CAS  PubMed  Google Scholar 

  33. Ortega E (2003) Neuroendocrine mediators in the modulation of phagocytosis by exercise: physiological implications. Exerc Immunol Rev 9:70–93

    PubMed  Google Scholar 

  34. Peake J, Suzuki K (2004) Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc Immunol Rev 10:129–141

    PubMed  Google Scholar 

  35. Bishop NC, Gleeson M, Nicholas CW, Ali A (2002) Influence of carbohydrate supplementation on plasma cytokine and neutrophil degranulation responses to high intensity intermittent exercise. Int J Sport Nutr Exerc Metab 12(2):145–156

    Article  CAS  PubMed  Google Scholar 

  36. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Skinner NA, MacIsaac CM, Hamilton JA, Visvanathan K (2005) Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin Exp Immunol 141(2):270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flynn MG, McFarlin BK, Phillips MD, Stewart LK, Timmerman KL (2003) Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol (1985) 95(5):1833–1842

    Article  CAS  Google Scholar 

  39. McFarlin BK, Flynn MG, Campbell WW, Craig BA, Robinson JP, Stewart LK, Timmerman KL, Coen PM (2006) Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J Gerontol Ser A Biol Sci Med Sci 61(4):388–393

    Article  Google Scholar 

  40. McFarlin BK, Flynn MG, Campbell WW, Stewart LK, Timmerman KL (2004) TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med Sci Sports Exerc 36(11):1876–1883

    Article  CAS  PubMed  Google Scholar 

  41. Sloan RP, Shapiro PA, Demeersman RE, McKinley PS, Tracey KJ, Slavov I, Fang Y, Flood PD (2007) Aerobic exercise attenuates inducible TNF production in humans. J Appl Physiol (1985) 103(3):1007–1011

    Article  Google Scholar 

  42. Stewart LK, Flynn MG, Campbell WW, Craig BA, Robinson JP, McFarlin BK, Timmerman KL, Coen PM, Felker J, Talbert E (2005) Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav Immun 19(5):389–397

    Article  CAS  PubMed  Google Scholar 

  43. Timmerman KL, Flynn MG, Coen PM, Markofski MM, Pence BD (2008) Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol 84(5):1271–1278

    Article  CAS  PubMed  Google Scholar 

  44. Kizaki T, Takemasa T, Sakurai T, Izawa T, Hanawa T, Kamiya S, Haga S, Imaizumi K, Ohno H (2008) Adaptation of macrophages to exercise training improves innate immunity. Biochem Biophys Res Commun 372(1):152–156

    Article  CAS  PubMed  Google Scholar 

  45. Lu Q, Ceddia MA, Price EA, Ye SM, Woods JA (1999) Chronic exercise increases macrophage-mediated tumor cytolysis in young and old mice. Am J Physiol 276(2 Pt 2):R482–R489

    CAS  PubMed  Google Scholar 

  46. Sugiura H, Nishida H, Sugiura H, Mirbod SM (2002) Immunomodulatory action of chronic exercise on macrophage and lymphocyte cytokine production in mice. Acta Physiol Scand 174(3):247–256

    Article  CAS  PubMed  Google Scholar 

  47. Vieira VJ, Valentine RJ, Wilund KR, Antao N, Baynard T, Woods JA (2009) Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice. Am J Physiol Endocrinol Metab 296(5):E1164–E1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vieira VJ, Valentine RJ, Wilund KR, Woods JA (2009) Effects of diet and exercise on metabolic disturbances in high-fat diet-fed mice. Cytokine 46(3):339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zielinski MR, Muenchow M, Wallig MA, Horn PL, Woods JA (2004) Exercise delays allogeneic tumor growth and reduces intratumoral inflammation and vascularization. J Applied Physiol (1985) 96(6):2249–2256

    Article  Google Scholar 

  50. Simpson RJ, McFarlin BK, McSporran C, Spielmann G, o Hartaigh B, Guy K (2009) Toll-like receptor expression on classic and pro-inflammatory blood monocytes after acute exercise in humans. Brain Behav Immun 23(2):232–239

    Article  CAS  PubMed  Google Scholar 

  51. Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M (2008) The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes. Brain Behav Immun 22(7):1066–1071

    Article  CAS  PubMed  Google Scholar 

  52. Hong S, Mills PJ (2008) Effects of an exercise challenge on mobilization and surface marker expression of monocyte subsets in individuals with normal vs. elevated blood pressure. Brain Behav Immun 22(4):590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steppich B, Dayyani F, Gruber R, Lorenz R, Mack M, Ziegler-Heitbrock HW (2000) Selective mobilization of CD14(+)CD16(+) monocytes by exercise. Am J Physiol Cell Physiol 279(3):C578–C586

    Article  CAS  PubMed  Google Scholar 

  54. Rivier A, Pene J, Chanez P, Anselme F, Caillaud C, Prefaut C, Godard P, Bousquet J (1994) Release of cytokines by blood monocytes during strenuous exercise. Int J Sports Med 15(4):192–198

    Article  CAS  PubMed  Google Scholar 

  55. Starkie RL, Angus DJ, Rolland J, Hargreaves M, Febbraio MA (2000) Effect of prolonged, submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J Physiol 528(Pt 3):647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lancaster GI, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT, Gleeson M (2005) The physiological regulation of toll-like receptor expression and function in humans. J Physiol 563(Pt 3):945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Starkie RL, Rolland J, Angus DJ, Anderson MJ, Febbraio MA (2001) Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. Am J Physiol Cell Physiol 280(4):C769–C774

    Article  CAS  PubMed  Google Scholar 

  58. Mills CD, Ley K (2014) M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun 6(6):716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ceddia MA, Voss EW Jr, Woods JA (2000) Intracellular mechanisms responsible for exercise-induced suppression of macrophage antigen presentation. J Appl Physiol (1985) 88(2):804–810

    Article  CAS  Google Scholar 

  60. Ceddia MA, Woods JA (1999) Exercise suppresses macrophage antigen presentation. J Appl Physiol (1985) 87(6):2253–2258

    Article  CAS  Google Scholar 

  61. Woods JA, Ceddia MA, Kozak C, Wolters BW (1997) Effects of exercise on the macrophage MHC II response to inflammation. Int J Sports Med 18(6):483–488

    Article  CAS  PubMed  Google Scholar 

  62. Ortega E, Forner MA, Barriga C (1997) Exercise-induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators. J Physiol 498(Pt 3):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Woods JA, Davis JM (1994) Exercise, monocyte/macrophage function, and cancer. Med Sci Sports Exerc 26(2):147–156

    Article  CAS  PubMed  Google Scholar 

  64. LaVoy EC, Bollard CM, Hanley PJ, O’Connor DP, Lowder TW, Bosch JA, Simpson RJ (2015) A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cell Immunol 295(1):52–59

    Article  CAS  PubMed  Google Scholar 

  65. Ho CS, Lopez JA, Vuckovic S, Pyke CM, Hockey RL, Hart DN (2001) Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 98(1):140–145

    Article  CAS  PubMed  Google Scholar 

  66. Deckx N, Wens I, Nuyts AH, Lee WP, Hens N, Koppen G, Goossens H, Van Damme P, Berneman ZN, Eijnde BO, Cools N (2015) Rapid exercise-induced mobilization of dendritic cells is potentially mediated by a Flt3L- and MMP-9-dependent process in multiple sclerosis. Mediat Inflamm 2015:158956

    Article  CAS  Google Scholar 

  67. Chiang LM, Chen YJ, Chiang J, Lai LY, Chen YY, Liao HF (2007) Modulation of dendritic cells by endurance training. Int J Sports Med 28(9):798–803

    Article  CAS  PubMed  Google Scholar 

  68. Liao HF, Chiang LM, Yen CC, Chen YY, Zhuang RR, Lai LY, Chiang J, Chen YJ (2006) Effect of a periodized exercise training and active recovery program on antitumor activity and development of dendritic cells. J Sports Med Phys Fitness 46(2):307–314

    CAS  PubMed  Google Scholar 

  69. Brown FF, Campbell JP, Wadley AJ, Fisher JP, Aldred S, Turner JE (2018) Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man. Physiol Behav 194:191–198

    Article  CAS  PubMed  Google Scholar 

  70. Benschop RJ, Oostveen FG, Heijnen CJ, Ballieux RE (1993) Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. Eur J Immunol 23(12):3242–3247

    Article  CAS  PubMed  Google Scholar 

  71. Timmons BW, Cieslak T (2008) Human natural killer cell subsets and acute exercise: a brief review. Exerc Immunol Rev 14:8–23

    PubMed  Google Scholar 

  72. Dorneles GP, Colato AS, Galvao SL, Ramis TR, Ribeiro JL, Romao PR, Peres A (2016) Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction. Clin Physiol Funct Imaging 36(4):311–317

    Article  CAS  PubMed  Google Scholar 

  73. Bjorkstrom NK, Ljunggren HG, Michaelsson J (2016) Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 16(5):310–320

    Article  PubMed  CAS  Google Scholar 

  74. McFarlin BK, Flynn MG, Phillips MD, Stewart LK, Timmerman KL (2005) Chronic resistance exercise training improves natural killer cell activity in older women. J Gerontol Ser A Biol Sci Med Sci 60(10):1315–1318

    Article  Google Scholar 

  75. Nieman DC, Nehlsen-Cannarella SL, Markoff PA, Balk-Lamberton AJ, Yang H, Chritton DB, Lee JW, Arabatzis K (1990) The effects of moderate exercise training on natural killer cells and acute upper respiratory tract infections. Int J Sports Med 11(6):467–473

    Article  CAS  PubMed  Google Scholar 

  76. Shephard RJ, Shek PN (1999) Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med 28(3):177–195

    Article  CAS  PubMed  Google Scholar 

  77. Nieman DC, Miller AR, Henson DA, Warren BJ, Gusewitch G, Johnson RL, Davis JM, Butterworth DE, Nehlsen-Cannarella SL (1993) Effects of high- vs moderate-intensity exercise on natural killer cell activity. Med Sci Sports Exerc 25(10):1126–1134

    Article  CAS  PubMed  Google Scholar 

  78. Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, Bollard CM, Simpson RJ (2014) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun 39:160–171

    Article  CAS  PubMed  Google Scholar 

  79. Bigley AB, Rezvani K, Pistillo M, Reed J, Agha N, Kunz H, O'Connor DP, Sekine T, Bollard CM, Simpson RJ (2015) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain Behav Immun 49:59–65

    Article  CAS  PubMed  Google Scholar 

  80. Potteiger JA, Chan MA, Haff GG, Mathew S, Schroeder CA, Haub MD, Chirathaworn C, Tibbetts SA, McDonald J, Omoike O, Benedict SH (2001) Training status influences T-cell responses in women following acute resistance exercise. J Strength Cond Res 15(2):185–191

    CAS  PubMed  Google Scholar 

  81. Dohi K, Mastro AM, Miles MP, Bush JA, Grove DS, Leach SK, Volek JS, Nindl BC, Marx JO, Gotshalk LA, Putukian M, Sebastianelli WJ, Kraemer WJ (2001) Lymphocyte proliferation in response to acute heavy resistance exercise in women: influence of muscle strength and total work. Eur J Appl Physiol 85(3–4):367–373

    Article  CAS  PubMed  Google Scholar 

  82. Miles MP, Kraemer WJ, Nindl BC, Grove DS, Leach SK, Dohi K, Marx JO, Volek JS, Mastro AM (2003) Strength, workload, anaerobic intensity and the immune response to resistance exercise in women. Acta Physiol Scand 178(2):155–163

    Article  CAS  PubMed  Google Scholar 

  83. Ramel A, Wagner KH, Elmadfa I (2004) Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men. Br J Sports Med 38(5):E22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mayhew DL, Thyfault JP, Koch AJ (2005) Rest-interval length affects leukocyte levels during heavy resistance exercise. J Strength Cond Res 19(1):16–22

    PubMed  Google Scholar 

  85. Peake JM, Nosaka K, Muthalib M, Suzuki K (2006) Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors. Exerc Immunol Rev 12:72–85

    PubMed  Google Scholar 

  86. Ghanbari-Niaki A, Saghebjoo M, Rashid-Lamir A, Fathi R, Kraemer RR (2010) Acute circuit-resistance exercise increases expression of lymphocyte agouti-related protein in young women. Exp Biol Med (Maywood, NJ) 235(3):326–334

    Article  CAS  Google Scholar 

  87. Mukaimoto T, Ohno M (2012) Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise. J Sports Sci 30(1):79–90

    Article  PubMed  Google Scholar 

  88. Szlezak AM, Tajouri L, Keane J, Szlezak SL, Minahan C (2015) Micro-Dose of Resistance-Exercise: Effects of Sub-Maximal Thumb Exertion on Leukocyte Redistribution and Fatigue in Trained Male Weightlifters. JPES 15:365–377

    Google Scholar 

  89. Szlezak AM, Tajouri L, Keane J, Szlezak SL, Minahan C (2016) Isometric thumb exertion induces B cell and T cell lymphocytosis in trained and untrained males: physical aptitude determines response profiles. IJKSS 4:55–66

    Google Scholar 

  90. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40

    Article  PubMed  Google Scholar 

  91. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    Article  CAS  PubMed  Google Scholar 

  92. Nehlsen-Cannarella SL, Nieman DC, Jessen J, Chang L, Gusewitch G, Blix GG, Ashley E (1991) The effects of acute moderate exercise on lymphocyte function and serum immunoglobulin levels. Int J Sports Med 12(4):391–398

    Article  CAS  PubMed  Google Scholar 

  93. Nieman DC, Tan SA, Lee JW, Berk LS (1989) Complement and immunoglobulin levels in athletes and sedentary controls. Int J Sports Med 10(2):124–128

    Article  CAS  PubMed  Google Scholar 

  94. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol (1985) 98(4):1154–1162

    Article  CAS  Google Scholar 

  95. Svendsen IS, Hem E, Gleeson M (2016) Effect of acute exercise and hypoxia on markers of systemic and mucosal immunity. Eur J Appl Physiol 116(6):1219–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gleeson M, Pyne DB, Callister R (2004) The missing links in exercise effects on mucosal immunity. Exerc Immunol Rev 10:107–128

    PubMed  Google Scholar 

  97. Bishop NC, Gleeson M (2009) Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci (Landmark Ed) 14:4444–4456

    Article  CAS  Google Scholar 

  98. Gleeson M, McDonald WA, Pyne DB, Cripps AW, Francis JL, Fricker PA, Clancy RL (1999) Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc 31(1):67–73

    Article  CAS  PubMed  Google Scholar 

  99. Neville V, Gleeson M, Folland JP (2008) Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc 40(7):1228–1236

    Article  CAS  PubMed  Google Scholar 

  100. Rutherfurd-Markwick K, Starck C, Dulson DK, Ali A (2017) Salivary diagnostic markers in males and females during rest and exercise. J Int Soc of Sports Nutr 14:27

    Article  CAS  Google Scholar 

  101. Carins J, Booth C (2002) Salivary immunoglobulin-A as a marker of stress during strenuous physical training. Aviat Space Environ Med 73(12):1203–1207

    PubMed  Google Scholar 

  102. Fahlman MM, Engels HJ (2005) Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc 37(3):374–380

    Article  CAS  PubMed  Google Scholar 

  103. Tiollier E, Gomez-Merino D, Burnat P, Jouanin JC, Bourrilhon C, Filaire E, Guezennec CY, Chennaoui M (2005) Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol 93(4):421–428

    Article  CAS  PubMed  Google Scholar 

  104. Whitham M, Laing SJ, Dorrington M, Walters R, Dunklin S, Bland D, Bilzon JL, Walsh NP (2006) The influence of an arduous military training program on immune function and upper respiratory tract infection incidence. Mil Med 171(8):703–709

    Article  PubMed  Google Scholar 

  105. LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112(5):1570–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ronsen O, Pedersen BK, Oritsland TR, Bahr R, Kjeldsen-Kragh J (2001) Leukocyte counts and lymphocyte responsiveness associated with repeated bouts of strenuous endurance exercise. J Appl Physiol (1985) 91(1):425–434

    Article  CAS  Google Scholar 

  107. Szlezak AM, Szlezak SL, Keane J, Tajouri L, Minahan C (2016) Establishing a dose-response relationship between acute resistance-exercise and the immune system: Protocol for a systematic review. Immunol Lett 180:54–65

    Article  CAS  PubMed  Google Scholar 

  108. Zuniga-Pflucker JC (2004) T-cell development made simple. Nat Rev Immunol 4(1):67–72

    Article  CAS  PubMed  Google Scholar 

  109. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Doucet C, Brouty-Boye D, Pottin-Clemenceau C, Jasmin C, Canonica GW, Azzarone B (1998) IL-4 and IL-13 specifically increase adhesion molecule and inflammatory cytokine expression in human lung fibroblasts. Int Immunol 10(10):1421–1433

    Article  CAS  PubMed  Google Scholar 

  111. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777

    Article  CAS  PubMed  Google Scholar 

  112. Harty JT, Tvinnereim AR, White DW (2000) CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol 18:275–308

    Article  CAS  PubMed  Google Scholar 

  113. Lancaster GI, Halson SL, Khan Q, Drysdale P, Wallace F, Jeukendrup AE, Drayson MT, Gleeson M (2004) Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev 10:91–106

    PubMed  Google Scholar 

  114. McCarthy DA, Dale MM (1988) The leucocytosis of exercise. A review and model. Sports Med 6(6):333–363

    Article  CAS  PubMed  Google Scholar 

  115. Nieman DC (2000) Is infection risk linked to exercise workload? Med Sci Sports Exerc 32(7 Suppl):S406–S411

    Article  CAS  PubMed  Google Scholar 

  116. Simpson RJ, Kunz H, Agha N, Graff R (2015) Exercise and the Regulation of Immune Functions. Prog Mol Biol Transl Sci 135:355–380

    Article  CAS  PubMed  Google Scholar 

  117. Xiao W, Liu Y, Luo B, Zhao L, Liu X, Zeng Z, Chen P (2016) Time-dependent gene expression analysis after mouse skeletal muscle contusion. J Sport Health Sci 5(1):101–108

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nieman DC, Wentz LM (2019) The compelling link between physical activity and the body’s defense system. J Sport Health Sci 8(3):201–217

    Article  PubMed  Google Scholar 

  119. Yuan X, Xu S, Huang H, Liang J, Wu Y, Li C, Yuan H, Zhao X, Lai X, Hou S (2018) Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand J Med Sci Sports 28(5):1541–1551

    Article  PubMed  Google Scholar 

  120. Cipryan L (2018) The effect of fitness level on cardiac autonomic regulation, IL-6, total antioxidant capacity, and muscle damage responses to a single bout of high-intensity interval training. J Sport Health Sci 7(3):363–371

    Article  PubMed  Google Scholar 

  121. Hojman P (2017) Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans 45(4):905–911

    Article  CAS  PubMed  Google Scholar 

  122. Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW (2017) Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer 17(10):620–632

    Article  PubMed  CAS  Google Scholar 

  123. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    Article  CAS  PubMed  Google Scholar 

  124. Lancaster GI, Febbraio MA (2014) The immunomodulating role of exercise in metabolic disease. Trends Immunol 35(6):262–269

    Article  CAS  PubMed  Google Scholar 

  125. Apostolopoulos V, Borkoles E, Polman R, Stojanovska L (2014) Physical and immunological aspects of exercise in chronic diseases. Immunotherapy 6(10):1145–1157

    Article  CAS  PubMed  Google Scholar 

  126. Mach N, Fuster-Botella D (2017) Endurance exercise and gut microbiota: a review. J Sport Health Sci 6(2):179–197

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81722008, 91639101, and 81570362 to JJ Xiao), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from Science and Technology Commission of Shanghai Municipality (17010500100, 18410722200 to JJ Xiao), the development fund for Shanghai talents (to JJ Xiao), and the Sailing Program from Science and Technology Commission of Shanghai (19YF1415400 to J Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Liu, S., Li, G., Xiao, J. (2020). Exercise Regulates the Immune System. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_27

Download citation

Publish with us

Policies and ethics