Skip to main content

Exercise and Muscle Atrophy

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

The incidence of muscle atrophy is increasing with each passing year, which imposes a huge burden on the quality of life of patients. It is a public health issue that causes a growing concern around the world. Exercise is one of the key strategies to prevent and treat various diseases. Appropriate exercise is conducive to compensatory muscle hypertrophy, to improve muscle strength and elasticity, and to train muscle coordination, which is also beneficial to the recovery of skeletal muscle function and the regeneration of muscle cells. Sequelae of paralysis of patients with limb dyskinesia caused by muscle atrophy will be significantly alleviated after regular exercise therapy. Furthermore, exercise therapy can slow down or even reverse muscle atrophy. This article aims to introduce the characteristics of muscle atrophy and summarize the role and mechanism of exercise in the treatment of muscle atrophy in the existing studies, in order to further explore the mechanism of exercise to protect muscle atrophy and provide protection for patients with muscular atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szent-Gyorgyi A (1958) Muscle research. Science 128(3326):699

    Article  CAS  PubMed  Google Scholar 

  2. Lieber RL (2018) Biomechanical response of skeletal muscle to eccentric contractions. J Sport Health Sci 7(3):294–309

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huxley HE (2005) Early developments in muscle research and the role of new structural technologies. Adv Exp Med Biol 565:3–11; discussion 11, 359–369

    Article  CAS  PubMed  Google Scholar 

  4. Sanger JM, Sanger JW (2014) Recent advances in muscle research. Anat Rec 297(9):1539–1542

    Article  Google Scholar 

  5. Qaisar R, Bhaskaran S, Van Remmen H (2016) Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 98:56–67

    Article  CAS  PubMed  Google Scholar 

  6. Chal J, Pourquie O (2017) Making muscle: skeletal myogenesis in vivo and in vitro. Development 144(12):2104–2122

    Article  CAS  PubMed  Google Scholar 

  7. Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410(1):1–13

    Article  CAS  PubMed  Google Scholar 

  8. Konopka AR, Harber MP (2014) Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev 42(2):53–61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pedersen BK (2013) Muscle as a secretory organ. Compr Physiol 3(3):1337–1362

    PubMed  Google Scholar 

  10. Mayeuf-Louchart A, Staels B, Duez H (2015) Skeletal muscle functions around the clock. Diabetes Obes Metab 17:39–46

    Article  CAS  PubMed  Google Scholar 

  11. Behan FP, Maden-Wilkinson TM, Pain MTG, Folland JP (2018) Sex differences in muscle morphology of the knee flexors and knee extensors. PLoS One 13(1):e0190903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32(7):1307–1313

    Article  CAS  PubMed  Google Scholar 

  13. Bruce SA, Phillips SK, Woledge RC (1997) Interpreting the relation between force and cross-sectional area in human muscle. Med Sci Sports Exerc 29(5):677–683

    Article  CAS  PubMed  Google Scholar 

  14. Ruegg JC (1987) Excitation-contraction coupling in fast- and slow-twitch muscle fibers. Int J Sports Med 8(6):360–364

    Article  CAS  PubMed  Google Scholar 

  15. Neu CM, Rauch F, Rittweger J, Manz F, Schoenau E (2002) Influence of puberty on muscle development at the forearm. Am J Physiol Endocrinol Metab 283(1):E103

    Article  CAS  PubMed  Google Scholar 

  16. Cunningham DA, Morrison D, Rice CL, Cooke C (1987) Ageing and isokinetic plantar flexion. Eur J Appl Physiol Occup Physiol 56(1):24–29

    Article  CAS  PubMed  Google Scholar 

  17. Metter EJ, Conwit R, Tobin J, Fozard JL (1997) Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol Ser A Biol Sci Med Sci 52(5):B267–B276

    Article  CAS  Google Scholar 

  18. Izquierdo M, Ibañez J, Gorostiaga E, Garrues M, Zúñiga A, Antón A, Larrión JL, Häkkinen K (2010) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol 167(1):57–68

    Article  Google Scholar 

  19. Ballak SB, Degens H, de Haan A, Jaspers RT (2014) Aging related changes in determinants of muscle force generating capacity: a comparison of muscle aging in men and male rodents. Ageing Res Rev 14:43–55

    Article  PubMed  Google Scholar 

  20. Santago AC 2nd, Plate JF, Shively CA, Register TC, Smith TL, Saul KR (2015) Age-related structural changes in upper extremity muscle tissue in a nonhuman primate model. J Shoulder Elb Surg 24(10):1660–1668

    Article  Google Scholar 

  21. Iversen E, Rostad V, Larmo A (2016) Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction. J Sport Health Sci 5(1):115–118

    Article  PubMed  Google Scholar 

  22. Latronico N, Guarneri B (2008) Critical illness myopathy and neuropathy. Minerva Anestesiol 74(6):319–323

    CAS  PubMed  Google Scholar 

  23. Timperley WR (1983) Clinical neuropathology. Clin Neuropathol 36(4):488-b

    Article  Google Scholar 

  24. Barnard RO (1983) Clinical neuropathology. J R Soc Med 76(4):332–332

    Google Scholar 

  25. Hughes RA, Cornblath DR (2005) Guillain-Barre syndrome. Lancet 366(5):386–392

    Google Scholar 

  26. Hirayama K (1962) Systemic diseases of the motor neurons. Amyotrophic lateral sclerosis, spinal progressive muscular atrophy, progressive bulbar paralysis, spastic spinal paralysis, peripheral nerve muscular atrophy. Naika 10:1067–1069

    CAS  PubMed  Google Scholar 

  27. Dyck PJ, Lais AC, Ohta M, Bastron JA, Okazaki H, Groover RV (1975) Chronic inflammatory polyradiculoneuropathy. Mayo Clin Proc 50(11):621–637

    CAS  PubMed  Google Scholar 

  28. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grisé D, Goldstein LH (2000) Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 38(6):734–747

    Article  CAS  PubMed  Google Scholar 

  29. Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole study group. N Engl J Med 330(9):585–591

    Article  CAS  PubMed  Google Scholar 

  30. Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2(1):21–29

    Article  CAS  PubMed  Google Scholar 

  31. Roberts S, Colombier P, Sowman A, Mennan C, Rolfing JH, Guicheux J, Edwards JR (2016) Ageing in the musculoskeletal system. Acta Orthop 87(sup 363):15–25

    Article  PubMed  PubMed Central  Google Scholar 

  32. Broome CS, Vasilaki A, Mcardle A (2007) Skeletal muscle aging. Rev Clin Gerontol 17(1):13–23

    Article  Google Scholar 

  33. Riley DA, Bain JLW, Romatowski JG, Fitts RH (2005) Skeletal muscle fiber atrophy: altered thin filament density changes slow fiber force and shortening velocity. Am J Physiol Cell Physiol 288(2):C360

    Article  CAS  PubMed  Google Scholar 

  34. Carter JC, Sheehan DW, Prochoroff A, Birnkrant DJ (2018) Muscular dystrophies. Clin Chest Med 39(2):377–389

    Article  PubMed  Google Scholar 

  35. Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740

    Article  CAS  PubMed  Google Scholar 

  36. Kang PB, Griggs RC (2015) Advances in muscular dystrophies. JAMA Neurol 72(7):741–742

    Article  PubMed  Google Scholar 

  37. Findlay AR, Goyal NA, Mozaffar T (2015) An overview of polymyositis and dermatomyositis. Muscle Nerve 51(5):638–656

    Article  CAS  PubMed  Google Scholar 

  38. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362(9388):971–982

    Article  CAS  PubMed  Google Scholar 

  39. Tarnopolsky MA (2016) Metabolic myopathies. Continuum (Minneap Minn) 22(6, Muscle and Neuromuscular Junction Disorders):1829–1851

    Google Scholar 

  40. Adler M, Shieh PB (2015) Metabolic myopathies. Semin Neurol 35(4):385–397

    Article  PubMed  Google Scholar 

  41. D’Amico A, Bertini E (2013) Metabolic neuropathies and myopathies. Handb Clin Neurol 113:1437–1455

    Article  PubMed  Google Scholar 

  42. Papadimas GK, Kekou K, Papadopoulos C, Kararizou E, Kanavakis E, Manta P (2015) Phenotypic variability and molecular genetics in proximal myotonic myopathy. Muscle Nerve 51(5):686–691

    Article  CAS  PubMed  Google Scholar 

  43. Ricker K (1999) Myotonic dystrophy and proximal myotonic myophathy. J Neurol 246(5):334–338

    Article  CAS  PubMed  Google Scholar 

  44. Hoppeler H, Kayser B, Lindstedt SL, Boesch C, Kushmerick M, Draeger A, Booth F (1997) Recommendations for muscle research in space. Int J Sports Med 18(Suppl 4):S280–S282

    Article  PubMed  Google Scholar 

  45. Kern H, Salmons S, Mayr WK, Carraro U (2005) Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 31(1):98–101

    Article  PubMed  Google Scholar 

  46. Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89(2):823

    Article  CAS  PubMed  Google Scholar 

  47. Sukegawa T (1983) Pathophysiology of muscular atrophy due to disuse--with special reference to a single muscle fiber and its ultrastructure. Nihon Seikeigeka Gakkai Zasshi 57(8):779

    CAS  PubMed  Google Scholar 

  48. Bricout VA, Serrurier BD, Bigard AX, Guezennec CY (1999) Effects of hindlimb suspension and androgen treatment on testosterone receptors in rat skeletal muscles. Eur J Appl Physiol Occup Physiol 79(5):443

    Article  CAS  PubMed  Google Scholar 

  49. Riley DA, Bain JL, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, Trappe TA, Costill DL (2000) Decreased thin filament density and length in human atrophic soleus muscle fibers after spaceflight. J Appl Physiol 88(2):567–572

    Article  CAS  PubMed  Google Scholar 

  50. Borisov AB, Huang SK, Carlson BM (2010) Remodeling of the vascular bed and progressive loss of capillaries in denervated skeletal muscle. Anat Rec 258(3):292–304

    Article  Google Scholar 

  51. Thibault MC, Zement B (1987) Role of trophic factors in muscle differentiation. Med Sci Sports Exerc 19(Suppl 5):S134–S141

    CAS  PubMed  Google Scholar 

  52. Quinn LS, Roh JS (1993) Overexpression of the human type-1 insulin-like growth factor receptor in rat L6 myoblasts induces ligand-dependent cell proliferation and inhibition of differentiation. Exp Cell Res 208(2):504–508

    Article  CAS  PubMed  Google Scholar 

  53. Quinn LS, Haugk KL (2015) Overexpression of the type-1 insulin-like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic cultures. J Cell Physiol 168(1):34–41

    Article  Google Scholar 

  54. Fryburg DA (1996) NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis. J Clin Investig 97(5):1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen G, Quinn LS (1992) Partial characterization of skeletal myoblast mitogens in mouse crushed muscle extract. J Cell Physiol 153(3):563–574

    Article  CAS  PubMed  Google Scholar 

  56. Wilkie RS, O'Neill IE, Butterwith SC, Duclos MJ, Goddard C (1995) Regulation of chick muscle satellite cells by fibroblast growth factors: interaction with insulin-like growth factor-I and heparin. Growth Regul 5(1):18–27

    CAS  PubMed  Google Scholar 

  57. Hashimoto Y, Abiru Y, Nishio C, Hatanaka H (1999) Synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor on cultured basal forebrain cholinergic neurons from postnatal 2-week-old rats. Dev Brain Res 115(1):25–32

    Article  CAS  Google Scholar 

  58. Benoit B, Meugnier E, Castelli M, Chanon S, Vieille-Marchiset A, Durand C, Bendridi N, Pesenti S, Monternier PA, Durieux AC, Freyssenet D, Rieusset J, Lefai E, Vidal H, Ruzzin J (2017) Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 23(8):990–996

    Article  CAS  PubMed  Google Scholar 

  59. Ip NY, Mcclain J, Barrezueta NX, Aldrich TH, Pan L, Li Y, Wiegand SJ, Friedman B, Davis S, Yancopoulos GD (1993) The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 10(1):89

    Article  CAS  PubMed  Google Scholar 

  60. Yarasheski KE, Zachwieja JJ, Campbell JA, Bier DM (1995) Effect of growth hormone and resistance exercise on muscle growth and strength in older men. Am Phys Soc J 268(2 Pt 1):E268–E276

    CAS  Google Scholar 

  61. Jurasinski G, Vary TC (1995) Modulation of skeletal muscle protein synthesis by amino acids and insulin during sepsis. Metab Clin Exp 44(9):1130–1138

    Article  CAS  PubMed  Google Scholar 

  62. Tuffaha SH, Budihardjo JD, Sarhane KA, Khusheim M, Song D, Broyles JM, Salvatori R, Means KR Jr, Higgins JP, Shores JT, Cooney DS, Hoke A, Lee WP, Brandacher G (2016) Growth hormone therapy accelerates axonal regeneration, promotes motor reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plast Reconstr Surg 137(6):1771–1780

    Article  CAS  PubMed  Google Scholar 

  63. Strand FL, Zuccarelli LA, Williams KA, Lee SJ, Lee TS, Antonawich FJ, Alves SE (2010) Melanotropins as growth factors. Ann N Y Acad Sci 680(1):29–50

    Google Scholar 

  64. Abdulla H, Smith K, Atherton PJ, Idris I (2016) Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia 59(1):44–55

    Article  CAS  PubMed  Google Scholar 

  65. Strand FL, Saintcome C, Lee TS, Lee SJ, Kume J, Zuccarelli LA (1993) ACTH/MSH(4-10) analog BIM 22015 aids regeneration via neurotrophic and myotrophic attributes. Peptides 14(2):287–296

    Article  CAS  PubMed  Google Scholar 

  66. Martín AI, Gómezmoreira C (2014) αMSH blunts endotoxin-induced MuRF1 and atrogin-1 upregulation in skeletal muscle by modulating NF-κB and Akt/FoxO1 pathway. Mediat Inflamm 2014:179368

    Article  CAS  Google Scholar 

  67. Zanconato S, Moromisato DY, Moromisato MY, Woods J, Brasel JA, Leroith D, Roberts CT, Cooper DM (1994) Effect of training and growth hormone suppression on insulin-like growth factor I mRNA in young rats. J Appl Physiol 76(5):2204

    Article  CAS  PubMed  Google Scholar 

  68. Kraemer WJ, Aguilera BA, Terada M, Newton RU, Lynch JM, Rosendaal G, Mcbride JM, Gordon SE, Hakkinen K (1995) Responses of IGF-I to endogenous increases in growth hormone after heavy-resistance exercise. J Appl Physiol 79(4):1310–1315

    Article  CAS  PubMed  Google Scholar 

  69. Harridge SD (2006) Responses and adaptations of skeletal muscle to hormones and drugs. In: Bottinelli R, Reggiani C (eds) Skeletal muscle plasticity in health and disease. Advances in muscle research, vol 2. Springer, Dordrecht

    Google Scholar 

  70. Barbe C, Kalista S, Loumaye A, Ritvos O, Lause P, Ferracin B, Thissen JP (2015) Role of IGF-I in follistatin-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309(6):E557–E567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29(5):535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gibney J, Healy ML, Sönksen PH (2007) The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocr Rev 28(6):603–624

    Article  CAS  PubMed  Google Scholar 

  73. Raynaud J, Capderou A, Martineaud JP, Bordachar J, Durand J (1983) Intersubject viability in growth hormone time course during different types of work. J Appl Physiol Respir Environ Exerc Physiol 55(6):1682–1687

    CAS  PubMed  Google Scholar 

  74. Gu JW, Santiago D, Olowe Y, Weinberger J (1997) Basic fibroblast growth factor as a biochemical marker of exercise-induced ischemia. Circulation 95(5):1165–1168

    Article  CAS  PubMed  Google Scholar 

  75. Cheng YH, Black IB, DiCicco-Bloom E (2002) Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci 15(1):3–12

    Article  PubMed  Google Scholar 

  76. Kruse R, Vienberg SG, Vind BF, Andersen B, Hojlund K (2017) Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 60(10):2042–2051

    Article  CAS  PubMed  Google Scholar 

  77. Fernandez-Twinn DS, Gascoin G, Musial B, Carr S, Duque-Guimaraes D, Blackmore HL, Alfaradhi MZ, Loche E, Sferruzzi-Perri AN, Fowden AL, Ozanne SE (2017) Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity. Sci Rep 7:44650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Catoire M, Kersten S (2015) The search for exercise factors in humans. FASEB J 29(5):1615–1628

    Article  CAS  PubMed  Google Scholar 

  79. Gollnick PD, Armstrong RB, Saubert CW, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33(3):312–319

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Zheng F, Cai Y, Zhang W, Dun Y (2018) Effect of long-term exercise training on lncRNAs expression in the vascular injury of insulin resistance. J Cardiovasc Transl Res 11(6):459–469

    Article  PubMed  Google Scholar 

  81. Bhat KP, Greer SF (2011) Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim Biophys Acta 1809(2):150–155

    Article  CAS  PubMed  Google Scholar 

  82. Mammucari C, Schiaffino S, Sandri M (2008) Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4(4):524–526

    Article  CAS  PubMed  Google Scholar 

  83. Zhao J, Brault JJ, Schild A, Goldberg AL (2008) Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 4(3):378–380

    Article  CAS  PubMed  Google Scholar 

  84. Chen YW, Gregory CM, Scarborough MT, Shi R, Walter GA, Vandenborne K (2007) Transcriptional pathways associated with skeletal muscle disuse atrophy in humans. Physiol Genomics 31(3):510–520

    Article  CAS  PubMed  Google Scholar 

  85. Senf SM, Dodd SL, McClung JM, Judge AR (2008) Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 22(11):3836–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88(1):359–363

    Article  CAS  PubMed  Google Scholar 

  87. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51

    Article  CAS  PubMed  Google Scholar 

  88. Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 102(4):1702–1707

    Article  CAS  PubMed  Google Scholar 

  89. Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol Lond 551(1):33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baumann CW, Kwak DM, Liu HMM, Thompson LV (2016) Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol 121(5):1047–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28(4):1621–1633

    Article  CAS  PubMed  Google Scholar 

  92. Fan J, Yang X, Li J, Shu Z, Dai J, Liu X, Li B, Jia S, Kou X, Yang Y (2017) Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 8(11):17475

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zampieri S, Mosole S, Lofler S, Fruhmann H, Burggraf S, Cvecka J, Hamar D, Sedliak M, Tirptakova V, Sarabon N, Mayr W, Kern H (2015) Physical exercise in aging: nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur J Translat Myol 25(4):237–242

    Article  Google Scholar 

  94. Denison HJ, Cooper C, Sayer AA, Robinson SM (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 10:859

    PubMed  PubMed Central  Google Scholar 

  95. Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC, Edwards M, Dennison E, Cooper C, Sayer AA (2013) Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing 42(3):378–384

    Article  PubMed  PubMed Central  Google Scholar 

  96. Batsis JA, Mackenzie TA, Barre LK, Lopez-Jimenez F, Bartels SJ (2014) Sarcopenia, sarcopenic obesity and mortality in older adults: results from the national health and nutrition examination survey III. Eur J Clin Nutr 68(9):1001–1007

    Article  CAS  PubMed  Google Scholar 

  97. Nair KS (2005) Aging muscle. Am J Clin Nutr 81(5):953–963

    Article  CAS  PubMed  Google Scholar 

  98. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102(15):5618–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Budui SL, Rossi AP, Zamboni M (2015) The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab 12(1):22–26

    PubMed  PubMed Central  Google Scholar 

  100. Hamilton B, Alonso JM, Best TM (2017) Time for a paradigm shift in the classification of muscle injuries. J Sport Health Sci 6(3):255–261

    Article  PubMed  PubMed Central  Google Scholar 

  101. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540

    Article  PubMed  Google Scholar 

  102. Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF (2001) Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J 15(2):475–482

    Article  CAS  PubMed  Google Scholar 

  103. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454(7203):463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P, Marx A, Loughran G, O'Callaghan K, Marobbio CM, Slotboom DJ, Kunji ER, Palmieri F, O'Connor R (2007) The insulin-like growth factor-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 18(9):3545–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schieke SM, Phillips D, Mccoy JP, Aponte AM, Shen RF, Balaban RS, Finkel T (2006) The mammalian target of Rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281(37):27643–27652

    Article  CAS  PubMed  Google Scholar 

  106. Ohkawa S, Odamaki M, Yoneyama T, Hibi I, Miyaji K, Kumagai H (2000) Standardized thigh muscle area measured by computed axial tomography as an alternate muscle mass index for nutritional assessment of hemodialysis patients. Am J Clin Nutr 71(2):485–490

    Article  CAS  PubMed  Google Scholar 

  107. Moore GE, Parsons DB, Stray-Gundersen J, Painter PL, Brinker KR, Mitchell JH (1993) Uremic myopathy limits aerobic capacity in hemodialysis patients. Am J Kidney Dis 22(2):277–287

    Article  CAS  PubMed  Google Scholar 

  108. Kouidi E, Albani M, Natsis K, Megalopoulos A, Gigis P, Guiba-Tziampiri O, Tourkantonis A, Deligiannis A (1998) The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol Dial Transplant 13(3):685–699

    Article  CAS  PubMed  Google Scholar 

  109. Bassil MS, Gougeon R (2013) Muscle protein anabolism in type 2 diabetes. Curr Opin Clin Nutr Metab Care 16(1):83–88

    Article  CAS  PubMed  Google Scholar 

  110. Pereira S, Marliss EB, Morais JA, Chevalier S, Gougeon R (2008) Insulin resistance of protein metabolism in type 2 diabetes. Diabetes 57(1):56–63

    Article  CAS  PubMed  Google Scholar 

  111. Stephens FB, Chee C, Wall BT, Murton AJ, Shannon CE, van Loon LJC, Tsintzas K (2015) Lipid-induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men. Diabetes 64(5):1615–1620

    Article  CAS  PubMed  Google Scholar 

  112. Brooks N, Layne JE, Gordon PL, Roubenoff R, Nelson ME, Castaneda-Sceppa C (2006) Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci 4(1):19–27

    PubMed  PubMed Central  Google Scholar 

  113. Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JFP, Dela F (2004) Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes 53(2):294–305

    Article  CAS  PubMed  Google Scholar 

  114. Narsale AA, Carson JA (2014) Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care 8(4):321–327

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    Article  CAS  PubMed  Google Scholar 

  116. Betof AS, Dewhirst MW, Jones LW (2013) Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun 30:S75–S87

    Article  PubMed  Google Scholar 

  117. Eaton M, Granata C, Barry J, Safdar A, Bishop D, Little JP (2018) Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J Sport Health Sci 7(2):191–196

    Article  PubMed  Google Scholar 

  118. Sakai H, Kimura M, Isa Y, Yabe S, Maruyama A, Tsuruno Y, Kai Y, Sato F, Yumoto T, Chiba Y, Narita M (2017) Effect of acute treadmill exercise on cisplatin-induced muscle atrophy in the mouse. Pflugers Arch.-Eur J Physiol 469(11):1495–1505

    Article  CAS  Google Scholar 

  119. Moreira JBN, Bechara LRG, Bozi LHM, Jannig PR, Monteiro AWA, Dourado PM, Wisloff U, Brum PC (2013) High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats. J Appl Physiol 114(8):1029–1041

    Article  CAS  PubMed  Google Scholar 

  120. Jia DD, Cai MX, Xi Y, Du SJ, Tian ZJ (2018) Interval exercise training increases LIF expression and prevents myocardial infarction-induced skeletal muscle atrophy in rats. Life Sci 193:77–86

    Article  CAS  PubMed  Google Scholar 

  121. Alkner BA, Tesch PA (2004) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181(3):345–357

    Article  CAS  PubMed  Google Scholar 

  122. Norman TL, Bradley-Popovich G, Clovis N, Cutlip RG, Bryner RW (2000) Aerobic exercise as a countermeasure for microgravity-induced bone loss and muscle atrophy in a rat hindlimb suspension model. Aviat Space Environ Med 71(6):593–598

    CAS  PubMed  Google Scholar 

  123. Cunha TF, Bacurau AVN, Moreira JBN, Paixao NA, Campos JC, Ferreira JCB, Leal ML, Negrao CE, Moriscot AS, Wisloff U, Brum PC (2012) Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One 7(8):e41701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. LaPier TK (1997) Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil Prev 17(2):76–84

    Article  CAS  Google Scholar 

  125. Zhang SF, Chen N (2018) Regulatory role of MicroRNAs in muscle atrophy during exercise intervention. Int J Mol Sci 19(2):405

    Article  PubMed Central  CAS  Google Scholar 

  126. Matheny RW Jr, Carrigan CT, Abdalla MN, Geddis AV, Leandry LA, Aguilar CA, Hobbs SS, Urso ML (2017) RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Hormon IGF Res 32:14–21

    Article  CAS  Google Scholar 

  127. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM (2011) High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 110(2):309–317

    Article  PubMed  Google Scholar 

  128. Gagan J, Dey BK, Layer R, Yan Z, Dutta A (2011) MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation. J Biol Chem 286(22):19431–19438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T (2010) The microRNA miR-696 regulates PGC-1α in mouse skeletal muscle in response to physical activity. Am J Physiol 298(1):E799

    CAS  Google Scholar 

  130. Fang ZJ, Li P, Jia WH, Jiang T, Wang ZY, Xiang Y (2016) miR-696 plays a role in hepatic gluconeogenesis in ob/ob mice by targeting PGC-1 alpha. Int J Mol Med 38(3):845–852

    Article  CAS  PubMed  Google Scholar 

  131. Park YM, Pereira RI, Erickson CB, Swibas TA, Kang CH, Van Pelt RE (2017) Time since menopause and skeletal muscle estrogen receptors, PGC-1 alpha, and AMPK. Menopause 24(7):815–823

    Article  PubMed  PubMed Central  Google Scholar 

  132. Snyder CM, Rice AL, Estrella NL, Held A, Kandarian SC, Naya FJ (2013) MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration. Development 140(1):31–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu J, Li RS, Workeneh B, Dong YL, Wang XN, Hu ZY (2012) Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int 82(4):401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jones TF, Eaton CB (1995) Exercise prescription. Am Fam Physician 52(2):543

    CAS  PubMed  Google Scholar 

  135. Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36(4):674

    Article  PubMed  Google Scholar 

  136. Wilkins LW (1981) Medicine and science in sports and exercise. Med Sci Sports Exerc 13(2):928–930

    Google Scholar 

  137. Penedo FJ, Dahn JR (2005) Exercise and Well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatry 18(2):189

    Article  PubMed  Google Scholar 

  138. Colberg SR, Sigal RJ, Bo F, Regensteiner JG, Blissmer BJ, Rubin RR, Chasan-Taber L, Albright AL, Braun B (2010) Exercise and type 2 diabetes. Diabetes Care 33(12):e147–e167

    Article  PubMed  PubMed Central  Google Scholar 

  139. Association AD (2000) Diabetes mellitus and exercise. Diabetes Care 20(2):S50

    Google Scholar 

  140. Fisher NM, Pendergast DR, Gresham GE, Calkins E (1991) Muscle rehabilitation: its effect on muscular and functional performance of patients with knee osteoarthritis. Arch Phys Med Rehabil 72(6):367–374

    CAS  PubMed  Google Scholar 

  141. Simkin A, Leichter I, Margulies JY, Ayalon J (1985) Exercise and osteoporosis. Br Med J 290(6476):1163–1164

    Article  Google Scholar 

  142. Nikander R, Sievänen H, Heinonen A, Daly RM, Uusirasi K, Kannus P (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8(1):47

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Ningbo Medical Science and Technology Project, (2016Z01), Ningbo Health Branding Subject Fund (PPXK2018-01), and Ningbo Huamei Research Fund (2017HMKY04).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, N., Ye, H. (2020). Exercise and Muscle Atrophy. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_17

Download citation

Publish with us

Policies and ethics