Skip to main content

An Overview of the Beneficial Effects of Exercise on Health and Performance

  • Chapter
  • First Online:
Physical Exercise for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1228))

Abstract

Life expectancy is steadily increasing in modern societies, and so are noncommunicable diseases such as cardiovascular diseases, diabetes, obesity, and cancer, accounting for more than 70% of all deaths globally. The costs associated with these diseases are enormous, but it has been estimated that the majority of these noncommunicable diseases are preventable. In addition to an unhealthy diet, tobacco use, and harmful use of alcohol, physical inactivity is a key risk factor. Consequently, physical activity is a logical remedy, and in this chapter an overview of the numerous beneficial effects of physical activity on health and performance is given.

The chapter is divided into three parts: First, the basics of physical activity and exercise are discussed, for instance exercise classification, exercise intensity operationalization, energy supply, and the acute effects of exercise such as blood flow redistribution and increased cardiac output. In the second part, the effects of exercise on physical performance are summarized. Specifically, it is discussed how endurance, strength, power, and balance can be improved. This discussion includes recommendations regarding the type, intensity, and duration of the exercise leading to improvements in one of these aspects of physical performance, as well as the mechanisms causing these adaptations. In the third part, the beneficial effects of physical activity on physical and mental health are outlined, with particular attention to cardiovascular diseases, the metabolic syndrome, musculoskeletal diseases, mood, anxiety, depression, and dementia.

It can be concluded that with adequate programming, regular physical activity is an effective way to improve physical performance, improve physical and mental health, and reduce the risk factors for many noncommunicable diseases such as cardiovascular diseases, metabolic syndrome, sarcopenia, osteoporosis, and depression. In contrast to medication, physical exercise has no negative side effects, costs very little, and targets many health issues at once. If the multitude of beneficial effects of regular exercise were to be combined in a single low-cost drug, it would be prescribed for almost all types of physical and mental health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296(5570):1029–1031

    Article  CAS  PubMed  Google Scholar 

  2. Alwan A, MacLean DR, Riley LM, d’Espaignet ET, Mathers CD, Stevens GA, Bettcher D (2010) Monitoring and surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. The Lancet 376(9755):1861–1868

    Article  Google Scholar 

  3. Wagner K-H, Brath H (2012) A global view on the development of non communicable diseases. Prev Med 54:S38–S41

    Article  PubMed  Google Scholar 

  4. Muka T, Imo D, Jaspers L, Colpani V, Chaker L, van der Lee SJ, Mendis S, Chowdhury R, Bramer WM, Falla A (2015) The global impact of non-communicable diseases on healthcare spending and national income: a systematic review. Eur J Epidemiol 30(4):251–277

    Article  PubMed  Google Scholar 

  5. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, Van Mechelen W, Pratt M, Committee LPASE (2016) The economic burden of physical inactivity: a global analysis of major non-communicable diseases. The Lancet 388(10051):1311–1324

    Article  Google Scholar 

  6. WHO: World Health Statistics 2018. https://www.who.int/gho/publications/world_health_statistics/2018/en/

  7. Vanhees L, De Sutter J, GeladaS N, Doyle F, Prescott E, Cornelissen V, Kouidi E, Dugmore D, Vanuzzo D, Börjesson M (2012) Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I). Eur J Prev Cardiol 19(4):670–686

    Article  CAS  PubMed  Google Scholar 

  8. Moore DR, Burd NA (2009) Exercise intensity matters for both young and old muscles. J Physiol 587(3):511–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blair SN (1995) Exercise prescription for health. Quest 47(3):338–353

    Article  Google Scholar 

  10. Tan B (1999) Manipulating resistance training program variables to optimize maximum strength in men: a review. J Strength Cond Res 13(3):289–304

    Article  Google Scholar 

  11. Krans J (2010) The sliding filament theory of muscle contraction. Nature Education 3(9):66

    Google Scholar 

  12. Eisenberg E, Hill TL (1985) Muscle contraction and free energy transduction in biological systems. Science 227(4690):999–1006

    Article  CAS  PubMed  Google Scholar 

  13. Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741

    Article  CAS  PubMed  Google Scholar 

  14. Mairbäurl H, Weber RE (2012) Oxygen transport by hemoglobin. Compr Physiol 2(2):1463–1489

    PubMed  Google Scholar 

  15. Hargreaves M, Spriet LL (2006) Exercise metabolism. Human Kinetics, Champaign

    Book  Google Scholar 

  16. Delp M, Laughlin M (1998) Regulation of skeletal muscle perfusion during exercise. Acta Physiol Scand 162(3):411–419

    Article  CAS  PubMed  Google Scholar 

  17. Chapman CB, Fisher JN, Sproule BJ (1960) Behavior of stroke volume at rest and during exercise in human beings. J Clin Invest 39(8):1208–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blackie SP, Fairbarn MS, McElvaney NG, Wilcox PG, Morrison NJ, Pardy RL (1991) Normal values and ranges for ventilation and breathing pattern at maximal exercise. Chest 100(1):136–142

    Article  CAS  PubMed  Google Scholar 

  19. Giboin L-S, Gruber M, Kramer A (2015) Task-specificity of balance training. Hum Mov Sci 44:22–31

    Article  PubMed  Google Scholar 

  20. Kümmel J, Kramer A, Giboin L-S, Gruber M (2016) Specificity of balance training in healthy individuals: a systematic review and meta-analysis. Sports Med 46(9):1261–1271

    Article  PubMed  Google Scholar 

  21. Giboin L-S, Gruber M, Kramer A (2018) Three months of slackline training elicit only task-specific improvements in balance performance. PLoS One 13(11):e0207542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hill A, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Int J Med 62:135–171

    Google Scholar 

  23. Wilmore JH, Costill DL, Kenney WL (1994) Physiology of sport and exercise. Human Kinetics, Champaign

    Google Scholar 

  24. Bassett DR, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84

    Article  PubMed  Google Scholar 

  25. Ekblom B, Astrand P-O, Saltin B, Stenberg J, Wallström B (1968) Effect of training on circulatory response to exercise. J Appl Physiol 24(4):518–528

    Article  CAS  PubMed  Google Scholar 

  26. Gledhill N (1985) The influence of altered blood volume and oxygen transport capacity on aerobic performance. Exerc Sport Sci Rev 13(1):75–94

    CAS  PubMed  Google Scholar 

  27. Andersen P, Henriksson J (1977) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol 270(3):677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci 301(1):3–29

    Article  CAS  PubMed  Google Scholar 

  29. Davies KJ, Packer L, Brooks GA (1981) Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 209(2):539–554

    Article  CAS  PubMed  Google Scholar 

  30. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56(4):831–838

    Article  CAS  PubMed  Google Scholar 

  31. Costill DL, Thomason H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5(4):248–252

    CAS  PubMed  Google Scholar 

  32. Bassett JD, Howley ET (1997) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints. Med Sci Sports Exerc 29(5):591–603

    Article  CAS  PubMed  Google Scholar 

  33. Hoff J, Gran A, Helgerud J (2002) Maximal strength training improves aerobic endurance performance. Scand J Med Sci Sports 12(5):288–295

    Article  CAS  PubMed  Google Scholar 

  34. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ (2005) Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol 98(6):1985–1990

    Article  PubMed  Google Scholar 

  35. Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386

    Article  CAS  PubMed  Google Scholar 

  36. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, Nieman DC, Swain DP (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. American College of Sports Medicine 43(7):1334–1359

    Google Scholar 

  37. K-i I, Zhang R, Zuckerman JH, Levine BD (2003) Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol 95(4):1575–1583

    Article  Google Scholar 

  38. Carrick-Ranson GC, Hastings JL, Bhella PS, Fujimoto N, Shibata S, Palmer MD, Boyd K, Livingston S, Dijk E, Levine BD (2014) The effect of lifelong exercise dose on cardiovascular function during exercise. Am J Physiol Heart Circ Physiol 116(7):736–745

    CAS  Google Scholar 

  39. Milanović Z, Sporiš G, Weston M (2015) Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO 2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med 45(10):1469–1481

    Article  PubMed  Google Scholar 

  40. Hickson R, Bomze H, Holloszy J (1977) Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 42(3):372–376

    Article  CAS  PubMed  Google Scholar 

  41. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts. Sports Med 39(6):469–490

    Article  PubMed  Google Scholar 

  42. Dickhuth H-H, Yin L, Niess A, Röcker K, Mayer F, Heitkamp H-C, Horstmann T (1999) Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 20(2):122–127

    CAS  PubMed  Google Scholar 

  43. Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28(10):1327–1330

    Article  CAS  PubMed  Google Scholar 

  44. Buchheit M, Laursen PB (2013) High-intensity interval training, solutions to the programming puzzle. Sports Med 43(5):313–338

    Article  PubMed  Google Scholar 

  45. Kramer A, Poppendieker T, Gruber M (2019) Suitability of jumps as a form of high-intensity interval training: effect of rest duration on oxygen uptake, heart rate and blood lactate. Eur J Appl Physiol 119(5):1149–1156

    Article  PubMed  Google Scholar 

  46. MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595(9):2915–2930

    Article  CAS  PubMed  Google Scholar 

  47. Gibala MJ, McGee SL (2008) Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev 36(2):58–63

    Article  PubMed  Google Scholar 

  48. Gibala MJ, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R (2007) Aerobic high-intensity intervals improve V˙ O2max more than moderate training. Med Sci Sports Exerc 39(4):665–671

    Article  PubMed  Google Scholar 

  50. Laursen PB (2010) Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports 20:1–10

    Article  PubMed  Google Scholar 

  51. Hoier B, Passos M, Bangsbo J, Hellsten Y (2013) Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Exp Physiol 98(2):585–597

    Article  CAS  PubMed  Google Scholar 

  52. Seiler S (2010) What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform 5(3):276–291

    Article  PubMed  Google Scholar 

  53. Ichinose Y, Kawakami Y, Ito M, Fukunaga T (1997) Estimation of active force-length characteristics of human vastus lateralis muscle. Cells Tissues Organs 159(2-3):78–83

    Article  CAS  Google Scholar 

  54. De Ruiter C, Kooistra R, Paalman M, De Haan A (2004) Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol 97(5):1693–1701

    Article  PubMed  Google Scholar 

  55. Larsen AH, Sørensen H, Puggaard L, Aagaard P (2009) Biomechanical determinants of maximal stair climbing capacity in healthy elderly women. Scand J Med Sci Sports 19(5):678–686

    Article  CAS  PubMed  Google Scholar 

  56. Skelton DA, Greig CA, Davies JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23(5):371–377

    Article  CAS  PubMed  Google Scholar 

  57. Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172(4):249–255

    Article  CAS  PubMed  Google Scholar 

  58. Huygens W, Thomis MA, Peeters MW, Vlietinck RF, Beunen GP (2004) Determinants and upper-limit heritabilities of skeletal muscle mass and strength. Can J Appl Physiol 29(2):186–200

    Article  PubMed  Google Scholar 

  59. Maughan R, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338(1):37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fitts RH, McDonald KS, Schluter JM (1991) The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. J Biomech 24:111–122

    Article  PubMed  Google Scholar 

  61. Sargeant AJ (2007) Structural and functional determinants of human muscle power. Exp Physiol 92(2):323–331

    Article  CAS  PubMed  Google Scholar 

  62. Hennessy LC, Watson AW (1994) The interference effects of training for strength and endurance simultaneously. J Strength Condit Res 8(1):12–19

    Google Scholar 

  63. Karavirta L, Häkkinen A, Sillanpää E, García-López D, Kauhanen A, Haapasaari A, Alen M, Pakarinen A, Kraemer W, Izquierdo M (2011) Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40–67-year-old men. Scand J Med Sci Sports 21(3):402–411

    Article  CAS  PubMed  Google Scholar 

  64. Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, Laursen PB (2008) Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res 22(4):1037–1045

    Article  PubMed  Google Scholar 

  65. Leveritt M, Abernethy PJ, Barry BK, Logan PA (1999) Concurrent strength and endurance training. Sports Med 28(6):413–427

    Article  CAS  PubMed  Google Scholar 

  66. Häkkinen K, Alen M, Kraemer W, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Häkkinen A, Valkeinen H, Kaarakainen E (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol 89(1):42–52

    Article  PubMed  Google Scholar 

  67. Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, Beyer KS, Boone CH, Miramonti AA, Wang R (2015) The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep 3(8):e12472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Ikegawa S, Funato K, Tsunoda N, Kanehisa H, Fukunaga T, Kawakami Y (2008) Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes. J Strength Cond Res 22(1):128–131

    Article  PubMed  Google Scholar 

  69. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW (2017) Strength and hypertrophy adaptations between low-vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12):3508–3523

    Article  PubMed  Google Scholar 

  70. Peterson MD, Rhea MR, Sen A, Gordon PM (2010) Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 9(3):226–237

    Article  PubMed  PubMed Central  Google Scholar 

  71. Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60

    Article  PubMed  Google Scholar 

  72. American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687

    Article  Google Scholar 

  73. Vissing K, Brink M, Lønbro S, Sørensen H, Overgaard K, Danborg K, Mortensen J, Elstrøm O, Rosenhøj N, Ringgaard S (2008) Muscle adaptations to plyometric vs. resistance training in untrained young men. J Strength Cond Res 22(6):1799–1810

    Article  PubMed  Google Scholar 

  74. Young WB (2006) Transfer of strength and power training to sports performance. Int J Sports Physiol Perform 1(2):74–83

    Article  PubMed  Google Scholar 

  75. Giboin L-S, Gruber M, Kramer A (2019) Motor learning of a dynamic balance task: Influence of lower limb power and prior balance practice. J Sci Med Sport 22(1):101–105

    Article  PubMed  Google Scholar 

  76. Kramer A, Giboin L-S (2019) Gleichgewichtstraining: transfer auf untrainierte Aufgaben? Sportphysio 7(01):16–21

    Article  Google Scholar 

  77. Ringhof S, Stein T (2018) Biomechanical assessment of dynamic balance: specificity of different balance tests. Hum Mov Sci 58:140–147

    Article  PubMed  Google Scholar 

  78. Ozaki A, Uchiyama M, Tagaya H, Ohida T, Ogihara R (2007) The Japanese Centenarian Study: autonomy was associated with health practices as well as physical status. J Am Geriatr Soc 55(1):95–101

    Article  PubMed  Google Scholar 

  79. Svantesson U, Jones J, Wolbert K, Alricsson M (2015) Impact of physical activity on the self-perceived quality of life in non-frail older adults. J Clin Med Res 7(8):585

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yusuf S, Reddy S, Ôunpuu S, Anand S (2001) Global burden of cardiovascular diseases: Part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104(22):2746–2753

    Article  CAS  PubMed  Google Scholar 

  81. Anderson KM, Odell PM, Wilson PW, Kannel WB (1991) Cardiovascular disease risk profiles. Am Heart J 121(1):293–298

    Article  CAS  PubMed  Google Scholar 

  82. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE (2004) Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med 351(26):2694–2703

    Article  CAS  PubMed  Google Scholar 

  83. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V (2004) Fitness versus physical activity patterns in predicting mortality in men. Am J Med 117(12):912–918

    Article  PubMed  Google Scholar 

  84. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, Gulanick M, Laing ST, Stewart KJ (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116(5):572–584

    Article  PubMed  Google Scholar 

  85. Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. Can Med Assoc J 174(6):801–809

    Article  Google Scholar 

  86. Kessler HS, Sisson SB, Short KR (2012) The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med 42(6):489–509

    Article  PubMed  Google Scholar 

  87. Wisløff U, Ellingsen Ø, Kemi OJ (2009) High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev 37(3):139–146

    Article  PubMed  Google Scholar 

  88. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L (2012) High-intensity interval training in cardiac rehabilitation. Sports Med 42(7):587–605

    Article  PubMed  Google Scholar 

  89. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287(3):356–359

    Article  PubMed  Google Scholar 

  90. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350

    Article  CAS  PubMed  Google Scholar 

  91. LaMonte MJ, Barlow CE, Jurca R, Kampert JB, Church TS, Blair SN (2005) Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation 112(4):505–512

    Article  PubMed  Google Scholar 

  92. Katzmarzyk PT, Church TS, Janssen I, Ross R, Blair SN (2005) Metabolic syndrome, obesity, and mortality: impact of cardiorespiratory fitness. Diabetes Care 28(2):391–397

    Article  PubMed  Google Scholar 

  93. Bassuk SS, Manson JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol 99(3):1193–1204

    Article  PubMed  Google Scholar 

  94. Swain DP, Franklin BA (2006) Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 97(1):141–147

    Article  PubMed  Google Scholar 

  95. Slentz CA, Aiken LB, Houmard JA, Bales CW, Johnson JL, Tanner CJ, Duscha BD, Kraus WE (2005) Inactivity, exercise and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol 99(4):1613–1618

    Article  PubMed  Google Scholar 

  96. DiPietro L, Dziura J, Yeckel CW, Neufer PD (2006) Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol 100(1):142–149

    Article  CAS  PubMed  Google Scholar 

  97. Carroll S, Dudfield M (2004) What is the relationship between exercise and metabolic abnormalities? Sports Med 34(6):371–418

    Article  PubMed  Google Scholar 

  98. Stewart KJ, Bacher AC, Turner K, Lim JG, Hees PS, Shapiro EP, Tayback M, Ouyang P (2005) Exercise and risk factors associated with metabolic syndrome in older adults. Am J Prev Med 28(1):9–18

    Article  PubMed  Google Scholar 

  99. Pitsavos C, Panagiotakos D, Weinem M, Stefanadis C (2006) Diet, exercise and the metabolic syndrome. Rev Diabet Stud 3(3):118

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bergman RN, Kim SP, Catalano KJ, Hsu IR, Chiu JD, Kabir M, Hucking K, Ader M (2006) Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity 14(S2):16S–19S

    Article  CAS  PubMed  Google Scholar 

  101. Hall KS, Cohen HJ, Pieper CF, Fillenbaum GG, Kraus WE, Huffman KM, Cornish MA, Shiloh A, Flynn C, Sloane R (2016) Physical performance across the adult life span: correlates with age and physical activity. J Gerontol A Biomed Sci Med Sci 72(4):572–578

    Google Scholar 

  102. Suominen H (2011) Ageing and maximal physical performance. Eur Rev Aging Physical Act 8(1):37

    Article  Google Scholar 

  103. Tanaka H, Seals DR (2003) Invited review: dynamic exercise performance in masters athletes: insight into the effects of primary human aging on physiological functional capacity. J Appl Physiol 95(5):2152–2162

    Article  PubMed  Google Scholar 

  104. Tanaka H, Seals DR (2008) Endurance exercise performance in Masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol 586(1):55–63

    Article  CAS  PubMed  Google Scholar 

  105. Wilks DC, Winwood K, Gilliver S, Kwiet A, Chatfield M, Michaelis I, Sun L, Ferretti JL, Sargeant AJ, Felsenberg D (2009) Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone 45(1):91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McCartney N, Hicks AL, Martin J, Webber CE (1995) Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci 50(2):B97–B104

    Article  CAS  PubMed  Google Scholar 

  107. Paw MJCA, Chin A, van Uffelen JG, Riphagen I, van Mechelen W (2008) The functional effects of physical exercise training in frail older people. Sports Med 38(9):781–793

    Article  Google Scholar 

  108. Latham NK, Bennett DA, Stretton CM, Anderson CS (2004) Systematic review of progressive resistance strength training in older adults. J Gerontol A Biol Sci Med Sci 59(1):M48–M61

    Article  Google Scholar 

  109. Harridge SD, Kryger A, Stensgaard A (1999) Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22(7):831–839

    Article  CAS  PubMed  Google Scholar 

  110. Rogers MA, Evans WJ (1993) Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev 21:65–102

    Article  CAS  PubMed  Google Scholar 

  111. Seene T, Kaasik P (2012) Muscle weakness in the elderly: role of sarcopenia, dynapenia, and possibilities for rehabilitation. Eur Rev Aging Phys Act 9(2):109

    Article  Google Scholar 

  112. Clark BC, Clark LA, Law TD (2016) Resistance exercise to prevent and manage sarcopenia and dynapenia. Annu Rev Gerontol Geriatr 36(1):205–228

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hunter GR, McCarthy JP, Bamman MM (2004) Effects of resistance training on older adults. Sports Med 34(5):329–348

    Article  PubMed  Google Scholar 

  114. Hakkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Malkia E, Kraemer W, Newton R, Alen M (1998) Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 84(4):1341–1349

    Article  CAS  PubMed  Google Scholar 

  115. Meredith C, Frontera W, Fisher E, Hughes V, Herland J, Edwards J, Evans W (1989) Peripheral effects of endurance training in young and old subjects. J Appl Physiol 66(6):2844–2849

    Article  CAS  PubMed  Google Scholar 

  116. Häkkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Häkkinen A (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53(6):B415–B423

    Article  PubMed  Google Scholar 

  117. Clark BC, Manini TM (2008) Sarcopenia≠ dynapenia. J Gerontol A Biol Sci Med Sci 63(8):829–834

    Article  PubMed  Google Scholar 

  118. Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjær M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20(1):49–64

    Article  CAS  PubMed  Google Scholar 

  119. Milgrom C, Finestone A, Simkin A, Ekenman I, Mendelson S, Millgram M, Nyska M, Larsson E, Burr D (2000) In-vivo strain measurements to evaluate the strengthening potential of exercises on the tibial bone. J Bone Joint Surg 82(4):591–594

    Article  CAS  Google Scholar 

  120. Bolotin H, Sievänen H, Grashuis J (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18(6):1020–1027

    Article  CAS  PubMed  Google Scholar 

  121. Bolotin H (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154

    Article  CAS  PubMed  Google Scholar 

  122. Greene DA, Naughton GA (2006) Adaptive skeletal responses to mechanical loading during adolescence. Sports Med 36(9):723–732

    Article  PubMed  Google Scholar 

  123. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1):1–9

    Article  CAS  PubMed  Google Scholar 

  124. Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Physiol 269(3 Pt 1):E438–E442

    CAS  PubMed  Google Scholar 

  125. Morseth B, Emaus N, Jørgensen L (2011) Physical activity and bone: the importance of the various mechanical stimuli for bone mineral density. A review. Norsk Epidemiologi 20(2):173–178

    Article  Google Scholar 

  126. Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407

    Article  CAS  PubMed  Google Scholar 

  127. Deere K, Sayers A, Rittweger J, Tobias JH (2012) Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. J Bone Miner Res 27(9):1887–1895

    Article  PubMed  Google Scholar 

  128. Tenforde AS, Fredericson M (2011) Influence of sports participation on bone health in the young athlete: a review of the literature. PM&R 3(9):861–867

    Article  Google Scholar 

  129. Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Mänttäri A, Vuori I (1995) Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17(3):197–203

    Article  CAS  PubMed  Google Scholar 

  130. Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. The Lancet 348(9038):1343–1347

    Article  CAS  Google Scholar 

  131. Vainionpää A, Korpelainen R, Leppäluoto J, Jämsä T (2005) Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 16(2):191–197

    Article  PubMed  Google Scholar 

  132. Heinonen A, Sievänen H, Kannus P, Oja P, Pasanen M, Vuori I (2000) High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 11(12):1010–1017

    Article  CAS  PubMed  Google Scholar 

  133. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16(1):148–156

    Article  CAS  PubMed  Google Scholar 

  134. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12(9):1480–1485

    Article  CAS  PubMed  Google Scholar 

  135. Rittweger J (2006) Can exercise prevent osteoporosis? J Musculoskelet Neuronal Interact 6(2):162

    CAS  PubMed  Google Scholar 

  136. Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, Peters JR, Romatowski JG, Bain JL, Riley DA (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588(Pt 18):3567–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aubert AE, Beckers F, Verheyden B (2005) Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 60(2):129–151

    Article  PubMed  Google Scholar 

  138. Vico L, Collet P, Guignandon A, Lafage-Proust M-H, Thomas T, Rehailia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. The Lancet 355(9215):1607–1611

    Article  CAS  Google Scholar 

  139. Trappe T, Burd N, Louis E, Lee G, Trappe S (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol 191(2):147–159

    Article  CAS  Google Scholar 

  140. Kramer A, Gollhofer A, Armbrecht G, Felsenberg D, Gruber M (2017) How to prevent the detrimental effects of two months of bed-rest on muscle, bone and cardiovascular system: an RCT. Sci Rep 7(1):13177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kramer A, Kümmel J, Gollhofer A, Armbrecht G, Ritzmann R, Belavy D, Felsenberg D, Gruber M (2018) Plyometrics can preserve peak power during two months of physical inactivity: an RCT including a one-year follow-up. Front Physiol 9:633

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kramer A, Kummel J, Mulder E, Gollhofer A, Frings-Meuthen P, Gruber M (2017) High-intensity jump training is tolerated during 60 days of bed rest and is very effective in preserving leg power and lean body mass: an overview of the cologne RSL study. PLoS One 12(1):e0169793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101(2):143–194

    Article  CAS  PubMed  Google Scholar 

  144. Bharadwaj P, Pai MM, Suziedelyte A (2017) Mental health stigma. Econ Lett 159:57–60

    Article  Google Scholar 

  145. Weyerer S, Kupfer B (1994) Physical exercise and psychological health. Sports Med 17(2):108–116

    Article  CAS  PubMed  Google Scholar 

  146. Stanton R, Happell B, Reaburn P (2014) The mental health benefits of regular physical activity, and its role in preventing future depressive illness. Nurs Res Rev 4:45–53

    Article  Google Scholar 

  147. Hamer M, Stamatakis E, Steptoe A (2009) Dose-response relationship between physical activity and mental health: the Scottish Health Survey. Br J Sports Med 43(14):1111–1114

    Article  CAS  PubMed  Google Scholar 

  148. Paillard T, Rolland Y, de Souto BP (2015) Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. J Clin Neurol 11(3):212–219

    Article  PubMed  PubMed Central  Google Scholar 

  149. Petruzzello SJ, Landers DM, Hatfield BD, Kubitz KA, Salazar W (1991) A meta-analysis on the anxiety-reducing effects of acute and chronic exercise. Sports Med 11(3):143–182

    Article  CAS  PubMed  Google Scholar 

  150. Brisswalter J, Collardeau M, René A (2002) Effects of acute physical exercise characteristics on cognitive performance. Sports Med 32(9):555–566

    Article  PubMed  Google Scholar 

  151. Liao Y, Shonkoff ET, Dunton GF (2015) The acute relationships between affect, physical feeling states, and physical activity in daily life: a review of current evidence. Front Psychol 6:1975

    Article  PubMed  PubMed Central  Google Scholar 

  152. Basso JC, Suzuki WA (2017) The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plast 2(2):127–152

    Article  PubMed  PubMed Central  Google Scholar 

  153. Steptoe A, Kearsley N, Walters N (1993) Acute mood responses to maximal and submaximal exercise in active and inactive men. Psychol Health 8(1):89–99

    Article  Google Scholar 

  154. Roth DL (1989) Acute emotional and psychophysiological effects of aerobic exercise. Psychophysiology 26(5):593–602

    Article  CAS  PubMed  Google Scholar 

  155. Hassmen P, Koivula N, Uutela A (2000) Physical exercise and psychological well-being: a population study in Finland. Prev Med 30(1):17–25

    Article  CAS  PubMed  Google Scholar 

  156. Tsatsoulis A, Fountoulakis S (2006) The protective role of exercise on stress system dysregulation and comorbidities. Ann N Y Acad Sci 1083(1):196–213

    Article  CAS  PubMed  Google Scholar 

  157. King AC, Taylor CB, Haskell WL (1993) Effects of differing intensities and formats of 12 months of exercise training on psychological outcomes in older adults. Health Psychol 12(4):292

    Article  CAS  PubMed  Google Scholar 

  158. Klaperski S, von Dawans B, Heinrichs M, Fuchs R (2014) Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: a randomized controlled trial. J Behav Med 37(6):1118–1133

    Article  PubMed  Google Scholar 

  159. Zimmerman M, Martinez JH, Young D, Chelminski I, Dalrymple K (2013) Severity classification on the Hamilton depression rating scale. J Affect Disord 150(2):384–388

    Article  PubMed  Google Scholar 

  160. Diagnostic and statistical manual of mental disorders (DSM-IV) (1994) American Psychiatric Association, Washington, DC

    Google Scholar 

  161. Taliaferro LA, Rienzo BA, Pigg RM, Miller MD, Dodd VJ (2009) Associations between physical activity and reduced rates of hopelessness, depression, and suicidal behavior among college students. J Am Coll Health 57(4):427–436

    Article  PubMed  Google Scholar 

  162. Mammen G, Faulkner G (2013) Physical activity and the prevention of depression: a systematic review of prospective studies. Am J Prev Med 45(5):649–657

    Article  PubMed  Google Scholar 

  163. Stathopoulou G, Powers MB, Berry AC, Smits JA, Otto MW (2006) Exercise interventions for mental health: a quantitative and qualitative review. Clin Psychol Sci Pract 13(2):179–193

    Article  Google Scholar 

  164. Josefsson T, Lindwall M, Archer T (2014) Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports 24(2):259–272

    Article  CAS  PubMed  Google Scholar 

  165. ten Have M, de Graaf R, Monshouwer K (2011) Physical exercise in adults and mental health status: findings from the Netherlands mental health survey and incidence study (NEMESIS). J Psychosom Res 71(5):342–348

    Article  PubMed  Google Scholar 

  166. Knapen J, Vancampfort D, Moriën Y, Marchal Y (2015) Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil 37(16):1490–1495

    Article  PubMed  Google Scholar 

  167. Carek PJ, Laibstain SE, Carek SM (2011) Exercise for the treatment of depression and anxiety. Int J Psychiatry Med 41(1):15–28

    Article  PubMed  Google Scholar 

  168. Barbour KA, Blumenthal JA (2005) Exercise training and depression in older adults. Neurobiol Aging 26(1):119–123

    Article  PubMed  Google Scholar 

  169. Zheng H, Liu Y, Li W, Yang B, Chen D, Wang X, Jiang Z, Wang H, Wang Z, Cornelisson G (2006) Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behav Brain Res 168(1):47–55

    Article  CAS  PubMed  Google Scholar 

  170. Erickson KI, Miller DL, Roecklein KA (2012) The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist 18(1):82–97

    Article  CAS  PubMed  Google Scholar 

  171. Wipfli B, Landers D, Nagoshi C, Ringenbach S (2011) An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand J Med Sci Sports 21(3):474–481

    Article  CAS  PubMed  Google Scholar 

  172. Babyak M, Blumenthal JA, Herman S, Khatri P, Doraiswamy M, Moore K, Craighead WE, Baldewicz TT, Krishnan KR (2000) Exercise treatment for major depression: maintenance of therapeutic benefit at 10 months. Psychosom Med 62(5):633–638

    Article  CAS  PubMed  Google Scholar 

  173. Martinsen EW, Hoffart A, Solberg Ø (1989) Comparing aerobic with nonaerobic forms of exercise in the treatment of clinical depression: a randomized trial. Compr Psychiatry 30(4):324–331

    Article  CAS  PubMed  Google Scholar 

  174. Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, Herman S, Craighead WE, Brosse AL, Waugh R (2007) Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med 69(7):587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J (2010) Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303(1):47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kendler KS, Gardner CO, Gatz M, Pedersen NL (2007) The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychol Med 37(3):453–462

    Article  PubMed  Google Scholar 

  177. Middeldorp C, Cath D, Van Dyck R, Boomsma D (2005) The co-morbidity of anxiety and depression in the perspective of genetic epidemiology. A review of twin and family studies. Psychol Med 35(5):611–624

    Article  CAS  PubMed  Google Scholar 

  178. Lovibond PF, Lovibond SH (1995) The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav Res Ther 33(3):335–343

    Article  CAS  PubMed  Google Scholar 

  179. Long BC, Rv S (1995) Effects of exercise training on anxiety: a meta-analysis. J Appl Sport Psychol 7(2):167–189

    Article  Google Scholar 

  180. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111

    PubMed  PubMed Central  Google Scholar 

  181. Patterson C, Feightner JW, Garcia A, Hsiung G-YR, MacKnight C, Sadovnick AD (2008) Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. Can Med Assoc J 178(5):548–556

    Article  Google Scholar 

  182. Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res 2013:657508

    PubMed  PubMed Central  Google Scholar 

  183. Kramer AF, Erickson KI (2007) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11(8):342–348

    Article  PubMed  Google Scholar 

  184. Sofi F, Valecchi D, Bacci D, Abbate R, Gensini GF, Casini A, Macchi C (2011) Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269(1):107–117

    Article  CAS  PubMed  Google Scholar 

  185. Haan MN (2006) Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Rev Neurol 2(3):159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kramer, A. (2020). An Overview of the Beneficial Effects of Exercise on Health and Performance. In: Xiao, J. (eds) Physical Exercise for Human Health. Advances in Experimental Medicine and Biology, vol 1228. Springer, Singapore. https://doi.org/10.1007/978-981-15-1792-1_1

Download citation

Publish with us

Policies and ethics