Skip to main content

Bioactive Phytocompounds to Fight Against Antimicrobial Resistance

  • Chapter
  • First Online:
Plant-derived Bioactives

Abstract

Antibiotics are the chemical substances secreted by microorganisms used for treating several types of other microbial diseases. However, a repeated as well as regular use of the antibiotics against particular microorganisms results in the antibiotic resistance. Bacteria, fungi, parasites, and even viruses possess such mechanisms of resistance. Until now, an admirable range of contemporary drugs are being derived from plant metabolites. Any single plant in fact represents a library of hundreds to thousands of architecturally and stereochemically complex chemicals, termed phytochemicals. Therefore, to inhibit antimicrobial resistant (AMR) microbes, plant products are recommended widely by the experts and users. Moreover, the membrane proteins that were accountable for antibiotic efflux can be effectively treated by plant-derived antimicrobials (PDAs). Also their use in combination with the existing commercial antibiotics exhibits superior antimicrobial activities, and hence is helpful in controlling the menace of AMR. This chapter discusses in detail about the consequences of antimicrobial resistance (AMR) and the development of more active PDAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Monaim MF, Abo-Elyousr KA, Morsy KM (2011) Effectiveness of plant extracts on suppression of damping-off and wilt diseases of lupine (Lupinus termis Forsik). Crop Prot 30(2):185–191

    Article  Google Scholar 

  • Adou E, Williams RB, Schilling JK, Malone S, Meyer J, Wisse JH, Frederik D, Koese D, Werkhoven MC, Snipes CE, Werk TL (2005) Cytotoxic diterpenoids from two lianas from the Suriname rainforest. Bioorg Med Chem 13(21):6009–6014

    Article  PubMed  CAS  Google Scholar 

  • Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74(2):113–123

    Article  PubMed  CAS  Google Scholar 

  • Akin M, Aktumsek A, Nostro A (2010) Antibacterial activity and composition of the essential oils of Eucalyptus camaldulensis Dehn. and Myrtus communis L. growing in Northern Cyprus. Afr J Biotechnol 9(4)

    Google Scholar 

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128(6):1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Al-Gendy AA, Nematallah KA, Zaghloul SS, Ayoub NA (2016) Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca. Pharm Biol 54(12):3257–3263

    Article  PubMed  CAS  Google Scholar 

  • Al-Saif SS, Abdel-Raouf N, El-Wazanani HA, Aref IA (2014) Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J Biol Sci 21(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Álvarez ÁL, Habtemariam S, Moneim AE, Melón S, Dalton KP, Parra F (2015) A spiroketal-enol ether derivative from Tanacetum vulgare selectively inhibits HSV-1 and HSV-2 glycoprotein accumulation in Vero cells. Antivir Res 119:8–18

    Article  PubMed  CAS  Google Scholar 

  • Amalya JT, Sumathy JH (2015) Antimicrobial and anticancer activity of the leaf, flower and carotenoid extracts of Peltophorum petrocarpum. Int J Curr Trends Pharm Res 3(1):748–753

    Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Amon W, Farrell PJ (2005) Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15(3):149–156

    Article  PubMed  Google Scholar 

  • An M, Shen H, Cao Y, Zhang J, Cai Y, Wang R, Jiang Y (2009) Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int J Antimicrob Agents 33(3):258–263

    Article  PubMed  CAS  Google Scholar 

  • Andersen OM, Markham KR (2005) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ansari JA, Naz S, Tarar OM, Siddiqi R, Haider MS, Jamil K (2015) Binding effect of proline-rich-proteins (PRPs) on in vitro antimicrobial activity of the flavonoids. Braz J Microbiol 46(1):183–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Archundia SLF, Pérez AJ, León CL, Brito RF (2006) Efecto tóxico de semillas de cuatro variedades de Carica papaya (Caricaceae) en Spodoptera frugiperda (Lepidoptera: Noctuidae). Folia Entomológica Mexicana 45(2):171–177

    Google Scholar 

  • Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-Galam T, Sathiyamoorthy P, Golan-Goldhirsh A, Benhar I, Tur-Kaspa R, Zemel R (2012) Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat 19(2):e81–e88

    Article  PubMed  CAS  Google Scholar 

  • Bai R, Zhang XJ, Li YL, Liu JP, Zhang HB, Xiao WL, Pu JX, Sun HD, Zheng YT, Liu LX (2015) SJP-L-5, a novel small-molecule compound, inhibits HIV-1 infection by blocking viral DNA nuclear entry. BMC Microbiol 15(1):274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balandín M, Royo J, Gómez E, Muniz LM, Molina A, Hueros G (2005) A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol Biol 58(2):269–282

    Article  PubMed  CAS  Google Scholar 

  • Barquero AA, Michelini FM, Alché LE (2006) 1-Cinnamoyl-3, 11-dihydroxymeliacarpin is a natural bioactive compound with antiviral and nuclear factor-κB modulating properties. Biochem Biophys Res Commun 344(3):955–962

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Brönstrup M (2014) Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 31(1):35–60

    Article  PubMed  CAS  Google Scholar 

  • Baysse C (2012) Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Res Adv Study Campylobacter Helicobacter Relat Org:238

    Google Scholar 

  • Benmalek Y, Yahia OA, Belkebir A, Fardeau ML (2013) Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp. monogyna and Allium cepa red and white varieties. Bioengineered 4(4):244–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Berenbaum MR (2002) Postgenomic chemical ecology: from genetic code to ecological interactions. J Chem Ecol 28(5):873–896

    Article  PubMed  CAS  Google Scholar 

  • Berthold-Pluta A, Stasiak-Różańska L, Pluta A, Garbowska M (2019) Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. Eur Food Res Technol 245(5):1137–1147

    Article  CAS  Google Scholar 

  • Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A (2017) The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antivir Res 137:76–81

    Article  PubMed  CAS  Google Scholar 

  • Borchardt JK (2002) The beginnings of drug therapy: ancient Mesopotamian medicine. Drug News Perspect 15(3):187–192

    Article  PubMed  Google Scholar 

  • Boughalleb N, Débbabi N, Jannet HB, Mighri Z, El Mahjoub M (2005) Antifungal activity of volatile components extracted from leaves, stems and flowers of four plants growing in Tunisia. Phytopathol Mediterr 44(3):307–312

    Google Scholar 

  • Boulanger S, Mitchell G, Bouarab K, Marsault É, Cantin A, Frost EH, Déziel E, Malouin F (2015) Bactericidal effect of tomatidine-tobramycin combination against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa is enhanced by interspecific small-molecule interactions. Antimicrob Agents Chemother 59(12):7458–7464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenes M, García A, De los Santos B, Medina E, Romero C, De Castro A, Romero F (2011) Olive glutaraldehyde-like compounds against plant pathogenic bacteria and fungi. Food Chem 125(4):1262–1266

    Article  CAS  Google Scholar 

  • Bryskier A (2005) Antimicrobial agents: antibacterials and antifungals. ASM Press, Washington, DC

    Book  Google Scholar 

  • Cai Y, Wang R, An MM, Liang BB, Fang Y (2008) In vitro bactericidal activity of allicin combined with cefoperazone, tobramycin and ciprofloxacin. Int J Antimicrob Agents 31(2):179–180

    Article  PubMed  CAS  Google Scholar 

  • Cañizares P, Gracia I, Gómez LA, García A, de Argila CM, Boixeda D, de Rafael L (2004) Thermal degradation of allicin in garlic extracts and its implication on the inhibition of the in-vitro growth of Helicobacter pylori. Biotechnol Prog 20(1):32–37

    Article  PubMed  CAS  Google Scholar 

  • Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67(8):685–694

    Article  PubMed  CAS  Google Scholar 

  • Castillo F, Hernández D, Gallegos G, Mendez M, Rodríguez R, Reyes A, Aguilar CN (2010) In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Ind Crop Prod 32(3):324–328

    Article  Google Scholar 

  • Cavallito CJ, Bailey JH (1944) Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J Am Chem Soc 66(11):1950–1951

    Article  CAS  Google Scholar 

  • Cawood ME, Pretorius JC, Van der Westhuizen AJ, Pretorius ZA (2010) Disease development and PR-protein activity in wheat (Triticum aestivum) seedlings treated with plant extracts prior to leaf rust (Puccinia triticina) infection. Crop Prot 29(11):1311–1319

    Article  Google Scholar 

  • Chagnon F, Guay I, Bonin MA, Mitchell G, Bouarab K, Malouin F, Marsault É (2014) Unraveling the structure–activity relationship of tomatidine, a steroid alkaloid with unique antibiotic properties against persistent forms of Staphylococcus aureus. Eur J Med 80:605–620

    Article  CAS  Google Scholar 

  • Charl RK, Sinniah UR, Swamy MK (2017) Antimicrobial activity of safed musli (Chlorophytum borivilianum L.) callus extract and GC-MS based chemical profiling. Bangl J Bot 46(1):305–310

    Google Scholar 

  • Charlier J, Thamsborg SM, Bartley DJ, Skuce PJ, Kenyon F, Geurden T, Hoste H, Williams AR, Sotiraki S, Höglund J, Chartier C (2018) Mind the gaps in research on the control of gastrointestinal nematodes of farmed ruminants and pigs. Transbound Emerg Dis 65:217–234

    Article  PubMed  Google Scholar 

  • Cheng HY, Lin TC, Yang CM, Wang KC, Lin CC (2004) Mechanism of action of the suppression of herpes simplex virus type 2 replication by pterocarnin A. Microbes Infect 6(8):738–744

    Article  PubMed  CAS  Google Scholar 

  • Cheng HY, Yang CM, Lin TC, Lin LT, Chiang LC, Lin CC (2011) Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid Based Complement Alternat Med 2011:259103. https://doi.org/10.1093/ecam/nep157

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng YB, Chien YT, Lee JC, Tseng CK, Wang HC, Lo IW, Wu YH, Wang SY, Wu YC, Chang FR (2014) Limonoids from the seeds of Swietenia macrophylla with inhibitory activity against dengue virus 2. J Nat Prod 77(11):2367–2374

    Article  PubMed  CAS  Google Scholar 

  • Choi GJ, Jang KS, Kim JS, Lee SW, Cho JY, Cho KY, Kim JC (2004) In vivo antifungal activities of 57 plant extracts against six plant pathogenic fungi. Plant Pathol J 20(3):184–191

    Article  Google Scholar 

  • Choi HJ, Song JH, Park KS, Kwon DH (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur J Pharm Sci 37(3–4):329–333

    Article  PubMed  CAS  Google Scholar 

  • Chuanasa T, Phromjai J, Lipipun V, Likhitwitayawuid K, Suzuki M, Pramyothin P, Hattori M, Shiraki K (2008) Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir Res 80(1):62–70

    Article  PubMed  CAS  Google Scholar 

  • Clarke RW (2015) Forces and structures of the herpes simplex virus (HSV) entry mechanism. ACS Infect Dis 1(9):403–415

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro RP, Krause DO, Doria JH, Holley RA (2014) Role of the BaeSR two-component regulatory system in resistance of Escherichia coli O157: H7 to allyl isothiocyanate. Int J Food Microbiol 42:136–141

    Article  CAS  Google Scholar 

  • Corlay N, Delang L, Girard-Valenciennes E, Neyts J, Clerc P, Smadja J, Guéritte F, Leyssen P, Litaudon M (2014) Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia 97:87–91

    Article  PubMed  CAS  Google Scholar 

  • Cos P, Maes L, Vanden Berghe D, Hermans N, Pieters L, Vlietinck A (2004) Plant substances as anti-HIV agents selected according to their putative mechanism of action. J Nat Prod 67(2):284–293

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Xu B, Wu T, Xu J, Yuan Y, Gu Q (2014) Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein–Barr virus lytic replication. J Nat Prod 77(1):100–110

    Article  PubMed  CAS  Google Scholar 

  • Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. J Nat Prod 26(5):343–356

    CAS  Google Scholar 

  • Dabur R, Chhillar AK, Yadav V, Kamal PK, Gupta J, Sharma GL (2005) In vitro antifungal activity of 2-(3, 4-dimethyl-2, 5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J Med Microbiol 54(6):549–552

    Article  PubMed  CAS  Google Scholar 

  • Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320(5872):100–103

    Article  PubMed  CAS  Google Scholar 

  • Dao TT, Nguyen PH, Lee HS, Kim E, Park J, Lim SI, Oh WK (2011) Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg Med Chem Lett 21(1):294–298

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1:13–25

    Article  PubMed  CAS  Google Scholar 

  • De Rodrıguez DJ, Hernández-Castillo D, Rodrıguez-Garcıa R, Angulo-Sánchez JL (2005) Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crop Prod 21(1):81–87

    Article  Google Scholar 

  • Dev S (1999) Ancient-modern concordance in Ayurvedic plants: some examples. Environ Health Perspect 107(10):783–789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewick PM (2009) The shikimate pathway: aromatic amino acids and phenylpropanoids. J Nat Prod 137:86

    Google Scholar 

  • Dhanawade SS, Sakhare AV (2012) Isolation of lycopene from tomato and study of its antimicrobial activity. Int J Sci Res 3(12):670–673

    Google Scholar 

  • Dias C, Aires A, N Bennett R, AS Rosa E, Saavedra MJ (2012) First study on antimicriobial activity and synergy between isothiocyanates and antibiotics against selected gram-negative and gram-positive pathogenic bacteria from clinical and animal source. J Med Chem 8(3):474–480

    Article  CAS  Google Scholar 

  • Dos Santos R, Pimenta-Freire G, Dias-Souza MV (2015) Carotenoids and flavonoids can impair the effectiveness of some antimicrobial drugs against clinical isolates of Escherichia coli and Staphylococcus aureus. Int Food Res J 22(5):1777–1782

    CAS  Google Scholar 

  • Dusane DH, Hosseinidoust Z, Asadishad B, Tufenkji N (2014) Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS One 9(11):e112093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dziedzic A, Wojtyczka R, Kubina R (2015) Inhibition of oral streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds. Molecules 20(8):13705–13724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enwa FO, Omojate CG, Adonu C (2013) A review on the phytochemical profile and the antibacterial susceptibility pattern of some clinical isolates to the ethanolic leaves extract of Moringa oleifera Lam (Moringaceae). Int J Adv Res 1(5):226–238

    Google Scholar 

  • Esimone CO, Eck G, Nworu CS, Hoffmann D, Überla K, Proksch P (2010) Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro. Phytomedicine 17(7):540–547

    Article  PubMed  CAS  Google Scholar 

  • Esposito F, Carli I, Del Vecchio C, Xu L, Corona A, Grandi N, Piano D, Maccioni E, Distinto S, Parolin C, Tramontano E, Sennoside A (2016) Derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 23(12):1383–1391

    Article  PubMed  CAS  Google Scholar 

  • Eumkeb G, Sakdarat S, Siriwong S (2010) Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine 18(1):40–45

    Article  PubMed  CAS  Google Scholar 

  • Eumkeb G, Siriwong S, Thumanu K (2012) Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J Photochem Photobiol 117:247–253

    Article  CAS  Google Scholar 

  • Fahey JW, Stephenson KK, Wade KL, Talalay P (2013) Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates. Biochem Biophys Res Commun 435(1):1–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tümmler B, Baquero F, Martínez JL (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3(2):e1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang CY, Chen SJ, Wu HN, Ping YH, Lin CY, Shiuan D, Chen CL, Lee YR, Huang KJ (2015) Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection. Viruses 7(9):4894–4910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes P (2006) Antibacterial discovery and development—the failure of success? Nat Biotechnol 24(12):1497

    Article  PubMed  CAS  Google Scholar 

  • Fine DH, Furgang D, Barnett ML, Drew C, Steinberg L, Charles CH, Vincent JW (2000) Effect of an essential oilcontaining antiseptic mouthrinse on plaque and salivary Streptococcus mutans levels. J Clin Periodontol 27(3):157–161

    Article  PubMed  CAS  Google Scholar 

  • Flores AR, Galloway-Peña J, Sahasrabhojane P, Saldaña M, Yao H, Su X, Ajami NJ, Holder ME, Petrosino JF, Thompson E, Ros IM (2015) Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 112(20):6431–6436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster W, Raoult A (1974) Early descriptions of antibiosis. Br J Gen Pract 24(149):889

    CAS  Google Scholar 

  • Franich RA, Gadgil PD, Shain L (1983) Fungistaxic effects of Pinus radiata needle epicuticular fatty and resin acids on Dothistroma pini. Physiol Mol Plant Pathol 23(2):183–195

    Article  CAS  Google Scholar 

  • Galuppo M, Nicola G, Iori R, Dell'utri P, Bramanti P, Mazzon E (2013) Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules 18(11):14340–14348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geng CA, Jiang ZY, Ma YB, Luo J, Zhang XM, Wang HL, Shen Y, Zuo AX, Zhou J, Chen JJ (2009) Swerilactones A and B, anti-HBV new lactones from a traditional Chinese herb: Swertia mileensis as a treatment for viral hepatitis. Org Lett 11(18):4120–4123

    Article  PubMed  CAS  Google Scholar 

  • Goossens H (2013) The Chennai declaration on antimicrobial resistance in India. Lancet Infect Dis 13(2):105–106

    Article  PubMed  Google Scholar 

  • Gupta AK (2003) Quality standards of Indian medicinal plants, vol 1. CABI, New Delhi

    Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93

    Article  CAS  Google Scholar 

  • Hamburger M, Dudan G, Nair AR, Jayaprakasam R, Hostettmann K (1989) An antifungal triterpenoid from Mollugo pentaphylla. Phytochemistry 28(6):1767–1768

    Article  CAS  Google Scholar 

  • Hamoud R, Reichling J, Wink M (2014) Synergistic antimicrobial activity of combinations of sanguinarine and EDTA with vancomycin against multidrug resistant bacteria. Drug Metab Lett 8(2):119–128

    Article  PubMed  CAS  Google Scholar 

  • Hanson JR (2003) Natural products: the secondary metabolites. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55(6):481–504

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Niwayama S, Hayashi T, Nago R, Ochiai H, Morita N (1988) In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1. Antivir Res 9(6):345–354

    Article  PubMed  CAS  Google Scholar 

  • Hikal DM (2018) Antibacterial activity of piperine and black pepper oil. Biosci Biotechnol Res Asia 15(4):877

    Article  Google Scholar 

  • Hollman PC, Arts IC (2000) Flavonols, flavones and flavanols–nature, occurrence and dietary burden. J Sci Food Agric 80(7):1081–1093

    Article  CAS  Google Scholar 

  • Hong S, Joo T, Jhoo JW (2015) Antioxidant and anti-inflammatory activities of 3, 5-dicaffeoylquinic acid isolated from Ligularia fischeri leaves. Food Sci Biotechnol 24(1):257–263

    Article  CAS  Google Scholar 

  • Hossion AM, Sasaki K (2013) Novel quercetin glycosides as potent anti-MRSA and anti-VRE agents. Recent Pat Antiinfect Drug Discov 8(3):198–205

    Article  PubMed  CAS  Google Scholar 

  • Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22(6):253–261

    Article  PubMed  CAS  Google Scholar 

  • Hoste H, Torres-Acosta JF, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, Thamsborg SM, Terrill TH (2015) Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol 212(1–2):5–17

    Article  PubMed  CAS  Google Scholar 

  • Houdijk JG, Kyriazakis I, Kidane A, Athanasiadou S (2012) Manipulating small ruminant parasite epidemiology through the combination of nutritional strategies. Vet Parasitol 186(1–2):38–50

    Article  PubMed  Google Scholar 

  • Hubert D, Réglier-Poupet H, Sermet-Gaudelus I, Ferroni A, Le Bourgeois M, Burgel PR, Serreau R, Dusser D, Poyart C, Coste J (2013) Association between Staphylococcus aureus alone or combined with Pseudomonas aeruginosa and the clinical condition of patients with cystic fibrosis. J Cyst Fibros 12(5):497–503

    Article  PubMed  Google Scholar 

  • Ibrahim NA, El-Sakhawy FS, Mohammed MM, Farid MA, Abdel-Wahed NA, Deabes DA (2015) Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. J Appl Pharm Sci5:1–5

    Google Scholar 

  • Ikram M (1975) A review on the chemical and pharmacological aspects of genus Berberis. Planta Med 28(08):353–358

    Article  PubMed  CAS  Google Scholar 

  • Iwashina T (2000) The structure and distribution of the flavonoids in plants. Int J Plant Res 113(3):287–299

    Article  CAS  Google Scholar 

  • Jazani NH, Shahabi S, Ali AA (2007) Antibacterial effects of water soluble green tea extracts on multi-antibiotic resistant isolates of Pseudomonas aeruginosa. Pak J Biol Sci 10(9):1544–1546

    Article  PubMed  Google Scholar 

  • Jiménez-Arellanes A, Luna-Herrera J, Cornejo-Garrido J, López-García S, Castro-Mussot ME, Meckes-Fischer M, Mata-Espinosa D, Marquina B, Torres J, Hernández-Pando R (2013) Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement Altern Med 13(1):258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph B, Dar MA, Kumar V (2008) Bio efficacy of plant extracts to control Fusarium solani f. sp. melongenae incitant of brinjal wilt. Global J Biotechnol Biochem 3(2):56–59

    Google Scholar 

  • Kang KB, Ming G, Kim GJ, Choi H, Oh WK, Sung SH (2015) Jubanines F-J, cyclopeptide alkaloids from the roots of Ziziphus jujuba. Phytochemistry 119:90–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karthikeyan G, Swamy MK, RajhaViknesh M, Shurya R, Sudhakar N (2019) Scientific validation of the usefulness of Withania somnifera Dunal. in the prevention of diseases. In: Swamy MK, Patra JK, Rudramurthy GR (eds) Medicinal plants: chemistry, pharmacology, and therapeutic applications. CRC Press, Boca Raton, pp 175–188

    Chapter  Google Scholar 

  • Keyes K, Lee MD, Maurer JJ (2008) Antibiotics: mode of action, mechanisms of resistance, and transfer. In: Torrance ME, Isaacson RE (eds) Microbial food safety in animal agriculture current topics. Iowa State Press, Ames, pp 45–56

    Google Scholar 

  • Kim YS, Kim KS, Han I, Kim MH, Jung MH, Park HK (2012) Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS One 7(6):e38242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HS, Lee SH, Byun Y, Park HD (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5:8656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N (2016) Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol 178:125–136

    Article  PubMed  CAS  Google Scholar 

  • Kockar C, Oztürk M, Bavbek N (2001) Helicobacter pylori eradication with beta carotene, ascorbic acid and allicin. Acta Medica (Hradec Kralove) 44(3):97–100

    Article  CAS  Google Scholar 

  • Krisch J, Ördögh L, Galgóczy L, Papp T, Vágvölgyi C (2009) Anticandidal effect of berry juices and extracts from Ribes species. Cent Eur J Biol 4(1):86–89

    CAS  Google Scholar 

  • Kumar N, Misra P, Dube A, Bhattacharya S, Dikshit M, Ranade S (2010) Piper betle Linn. a maligned Pan-Asiatic plant with an array of pharmacological activities and prospects for drug discovery. Curr Sci 99(7):922–932

    CAS  Google Scholar 

  • Kummee S, Intaraksa N (2008) Antimicrobial activity of Desmos chinensis leaf and Maclura cochinchinensis wood extracts. Songklanakarin J Sci Technol 30(5):635–639

    Google Scholar 

  • Kuo YC, Lin LC, Tsai WJ, Chou CJ, Kung SH, Ho YH (2002) Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in Vero cells by regulation of viral macromolecular synthesis. Antimicrob Agents Chemother 46(9):2854–2864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lall N, Weiganand O, Hussein AA, Meyer JJ (2006) Antifungal activity of naphthoquinones and triterpenes isolated from the root bark of Euclea natalensis. S Afr J Bot 72(4):579–583

    Article  CAS  Google Scholar 

  • Larhsini M, Oumoulid L, Lazrek H, Wataleb S, Bousaid M, Bekkouche K, Jana M (2001) Antibacterial activity of some Moroccan medicinal plants. Phytother Res 15(3):250–252

    Article  PubMed  CAS  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  • Lee SH, Chang KS, Su MS, Huang YS, Jang HD (2007) Effects of some Chinese medicinal plant extracts on five different fungi. Food Control 18(12):1547–1554

    Article  Google Scholar 

  • Lee KA, Moon SH, Kim KT, Mendonca AF, Paik HD (2010) Antimicrobial effects of various flavonoids on Escherichia coli O157: H7 cell growth and lipopolysaccharide production. Food Sci Biotechnol 19(1):257–261

    Article  CAS  Google Scholar 

  • Lee JH, Kim YG, Choi P, Ham J, Park JG, Lee J (2018) Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cell Infect Microbiol 8:299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372(9):825–834

    Article  PubMed  CAS  Google Scholar 

  • Levy SB (2002a) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92:65S–71S

    Article  PubMed  Google Scholar 

  • Levy SB (2002b) From tragedy the antibiotic era is born. In: Wormser GP (ed) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. Perseus Publishing, Cambridge, pp 1–4

    Google Scholar 

  • Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36(1):22–32

    PubMed  Google Scholar 

  • Li Y, But PP, Ooi VE (2005) Antiviral activity and mode of action of caffeoylquinic acids from Schefflera heptaphylla (L.) Frodin. Antivir Res 68(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Likhitwitayawuid K, Sritularak B, Benchanak K, Lipipun V, Mathew J, Schinazi RF (2005) Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat Prod Res 19(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Lima LM, Babakhani B, Boldaji SAH, Asadi M, Boldaji RM (2013) Essential oils composition and antibacterial activities of Eucalyptus camaldulensis Dehn. Med Plants—Int J Phytomed Relat Indust 5(4):214–218

    Article  Google Scholar 

  • Lin LT, Chung CY, Hsu WC, Chang SP, Hung TC, Shields J, Russell RS, Lin CC, Li CF, Yen MH, Tyrrell DL (2015) Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J Hepatol 62(3):541–548

    Article  PubMed  CAS  Google Scholar 

  • Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BA (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39(10):3421–3429

    Article  PubMed  CAS  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipipun V, Kurokawa M, Suttisri R, Taweechotipatr P, Pramyothin P, Hattori M, Shiraki K (2003) Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antivir Res 60(3):175–180

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Mou Y, Zhao J, Wang J, Zhou L, Wang M, Wang D, Han J, Yu Z, Yang F (2010) Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules 15(11):7933–7945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu R, Zhang H, Yuan M, Zhou J, Tu Q, Liu JJ, Wang J (2013) Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules 18(9):11496–11511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Niu H, Zhang W, Mu H, Sun C, Duan J (2015) Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Lett Appld Microbiol 60(5):421–430

    Article  CAS  Google Scholar 

  • Lobo PL, Fonteles CS, De Carvalho CB, do Nascimento DF, da Cruz Fonseca SG, Jamacaru FV, De Moraes ME (2011) Dose-response evaluation of a novel essential oil against mutans streptococci in vivo. Phytomedicine 18(7):551–556

    Article  PubMed  CAS  Google Scholar 

  • Luo DQ, Wang H, Tian X, Shao HJ, Liu JK (2005) Antifungal properties of pristimerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci: formerly Pestic Sci 61(1):85–90

    Article  CAS  Google Scholar 

  • Łysakowska M, Sienkiewicz M, Banaszek K, Sokołowski J (2015) The sensitivity of endodontic Enterococcus spp. strains to geranium essential oil. Molecules 20(12):22881–22889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magesh H, Kumar A, Alam A, Sekar U (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 51(9):764–772

    PubMed  CAS  Google Scholar 

  • Maheshwari A, Thuluvath PJ (2010) Management of acute hepatitis C. Clin Liver Dis 14(1):169–176

    Article  PubMed  Google Scholar 

  • Man A, Santacroce L, Jacob R, Mare A, Man L (2019) Antimicrobial activity of six essential oils against a group of human pathogens: a comparative study. Pathogens 8(1):15

    Article  PubMed Central  CAS  Google Scholar 

  • Mancuso M, Catalfamo M, Laganà P, Rappazzo AC, Raymo V, Zampino D, Zaccone R (2019) Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and Candida strains. Flavour Fragr J 34(3):187–200

    Article  CAS  Google Scholar 

  • Martin JR (1989) Factual writing: exploring and challenging social reality. Oxford University Press, Cary

    Google Scholar 

  • Masters PA, O’Bryan TA, Zurlo J, Miller DQ, Joshi N (2003) Trimethoprim-Sulfamethoxazole–induced life-threatening agranulocytosis—reply. Arch Intern Med 163(16):1975–1976

    Article  Google Scholar 

  • Mazumder A, Dwivedi A, Du Plessis J (2016) Sinigrin and its therapeutic benefits. Molecules 21(4):416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merghni A, Marzouki H, Hentati H, Aouni M, Mastouri M (2016) Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr Res Transl Med 64(1):29–34

    Article  Google Scholar 

  • Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751

    PubMed  CAS  Google Scholar 

  • Mitchell G, Gattuso M, Grondin G, Marsault É, Bouarab K, Malouin F (2011) Tomatidine inhibits replication of Staphylococcus aureus small-colony variants in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 55(5):1937–1945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, Yueh A, Abubakar S, Zandi K (2014) Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 4:5452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanty SK, Swamy MK, Sinniah UR, Anuradha M (2017) Leptadenia reticulata (Retz.) Wight & Arn. (Jivanti): botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects. Molecules 22(6):1019

    Article  PubMed Central  CAS  Google Scholar 

  • Molnár P, Kawase M, Satoh K, Sohara Y, Tanaka T, Tani S, Sakagami H, Nakashima H, Motohashi N, Gyémánt N, Molnár J (2005) Biological activity of carotenoids in red paprika, Valencia orange and Golden delicious apple. Phytother Res 19(8):700–707

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Rhee MS (2016) Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact. Int J Food Microbiol 217:35–41

    Article  PubMed  CAS  Google Scholar 

  • Morgan ER, Wall R (2009) Climate change and parasitic disease: farmer mitigation? Trends Parasitol 25(7):308–313

    Article  PubMed  Google Scholar 

  • Murthy MM, Subramanyam M, Bindu MH, Annapurna J (2005) Antimicrobial activity of clerodane diterpenoids from Polyalthia longifolia seeds. Fitoterapia 76(3–4):336–339

    Article  CAS  Google Scholar 

  • Naderer OJ, Dumont E, Zhu J, Kurtinecz M, Jones LS (2013) Single-dose safety, tolerability, and pharmacokinetics of the antibiotic GSK1322322, a novel peptide deformylase inhibitor. Antimicrob Agents Chemother 57(5):2005–2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai T, Moriguchi R, Suzuki Y, Tomimori T, Yamada H (1995) Mode of action of the anti-influenza virus activity of plant flavonoid, 5, 7, 4′-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis. Antivir Res 26(1):11–25

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Tsushida T, Hamaya E, Enoki N, Manabe S, Nishino C (1985) Camellidins, antifungal saponins isolated from Camellia japonica. Agric Biol Chem 49(4):1181–1186

    CAS  Google Scholar 

  • Nair R, Chanda S (2008) Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Indian J Pharma Sci 70(3):390

    Article  CAS  Google Scholar 

  • Nalina T, Rahim ZH (2007) The crude aqueous extract of Piper betle L. and its antibacterial effect towards Streptococcus mutans. Am J Biotechnol Biochem 3(1):10–15

    Article  Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MK (2015) Universal challenges for parasite control: a perspective from equine parasitology. Trends Parasitol 31(7):282–284

    Article  PubMed  Google Scholar 

  • Nothias-Scaglia LF, Retailleau P, Paolini J, Pannecouque C, Neyts J, Dumontet V, Roussi F, Leyssen P, Costa J, Litaudon M (2014) Jatrophane diterpenes as inhibitors of chikungunya virus replication: structure–activity relationship and discovery of a potent lead. J Nat Prod 77(6):1505–1512

    Article  PubMed  CAS  Google Scholar 

  • Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR Jr, Hatfull GF (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69(1):164–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olli S, Kirti PB (2006) Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. BMB Rep 39(3):278–283

    Article  CAS  Google Scholar 

  • Omojate Godstime C, Enwa Felix O, Jewo Augustina O, Eze Christopher O (2014) Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens—a review. J Pharm Chem Biol Sci 2(2):77–85

    Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368(2):257–262

    Article  PubMed  CAS  Google Scholar 

  • Owlia P, Saderi H, Rasooli I, Sefidkon F (2010) Antimicrobial characteristics of some herbal oils on Pseudomonas aeruginosa with special reference to their chemical compositions. Iran J Pharma Res 8:107–114

    Google Scholar 

  • Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140(2–3):164–168

    Article  PubMed  CAS  Google Scholar 

  • Park M, Bae J, Lee DS (2008) Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res 22(11):1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Köhler B, García-Moreno F, Bayon Y, Pascual G, Bellón JM (2015) Inhibition of Staphylococcus aureus adhesion to the surface of a reticular heavyweight polypropylene mesh soaked in a combination of chlorhexidine and allicin: an in vitro study. PLoS One 10(5):e0126711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phelan P, Morgan ER, Rose H, Grant J, O’Kiely P (2016) Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. J Agric Sci 154(5):765–781

    Article  Google Scholar 

  • Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56(3):237–243

    Article  PubMed  CAS  Google Scholar 

  • Pinto JM, Souza EA, Oliveira DF (2010) Use of plant extracts in the control of common bean anthracnose. Crop Prot 29(8):838–842

    Article  Google Scholar 

  • Pooja C, Bhagwati G, Kavit M (2015) Carotenoid and antibacterial analysis of Thuja occidentalis. Science 5(7):112–114

    Google Scholar 

  • Qin N, Li CB, Jin MN, Shi LH, Duan HQ, Niu WY (2011) Synthesis and biological activity of novel tiliroside derivants. Eur J Med Chem 46(10):5189–5195

    Article  PubMed  CAS  Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137(4):1375–1388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rani SS, Saxena N, Udaysree N (2013) Antimicrobial activity of black pepper (Piper nigrum L.). Global J Pharmacol 7:87–90

    Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, O’Neal JM (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20(12):522–531

    Article  PubMed  CAS  Google Scholar 

  • Rasoamiaranjanahary L, Marston A, Guilet D, Schenk K, Randimbivololona F, Hostettmann K (2003) Antifungal diterpenes from Hypoestes serpens (Acanthaceae). Phytochemistry 62(3):333–337

    Article  PubMed  CAS  Google Scholar 

  • Rates SM (2001) Plants as source of drugs. Toxicon 39(5):603–613

    Article  PubMed  CAS  Google Scholar 

  • Rawal MK, Shokoohinia Y, Chianese G, Zolfaghari B, Appendino G, Taglialatela-Scafati O, Prasad R, Di Pietro A (2014) Jatrophanes from Euphorbia squamosa as potent inhibitors of Candida albicans multidrug transporters. J Nat Prod 77(12):2700–2706

    Article  PubMed  CAS  Google Scholar 

  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Yoshinari T, Rezaee MB, Jaimand K, Nagasawa H, Sakuda S (2008) Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int J Food Microbiol 123(3):228–233

    Article  PubMed  CAS  Google Scholar 

  • Renaud SC, Guéguen R, Schenker J, d’Houtaud A (1998) Alcohol and mortality in middle-aged men from eastern France. Epidemiology 9(2):184–188

    Article  PubMed  CAS  Google Scholar 

  • Rennie RP (2012) Current and future challenges in the development of antimicrobial agents. In: Rennie RP (ed) Antibiotic resistance. Springer, Berlin, pp 45–65

    Chapter  Google Scholar 

  • Robbers JE, Speedie MK, Tyler VE (1996) Pharmacognosy and pharmacobiotechnology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Różalski M, Walencka E, Różalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14(1):31–35

    Article  PubMed  CAS  Google Scholar 

  • Rudramurthy G, Swamy M, Sinniah U, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21(7):836

    Article  PubMed Central  CAS  Google Scholar 

  • Saks Y, Barkai-Golan R (1995) Aloe vera gel activity against plant pathogenic fungi. Postharvest Biol Technol 6(1–2):159–165

    Article  Google Scholar 

  • Sasidharan I, Menon AN (2010) Comparative chemical composition and antimicrobial activity fresh & dry ginger oils (Zingiber officinale Roscoe). Int J Curr Pharma Res 2(4):40–43

    CAS  Google Scholar 

  • Sasivimolphan P, Lipipun V, Likhitwitayawuid K, Takemoto M, Pramyothin P, Hattori M, Shiraki K (2009) Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antiviral Res 84(1):95–97

    Article  PubMed  CAS  Google Scholar 

  • Sawyer MG, Gannoni AF, Toogood IR, Antoniou G, Rice M (1994) The use of alternative therapies by children with cancer. Med J Aust 160(6):320–322

    Article  PubMed  CAS  Google Scholar 

  • Sayhan H, Beyaz SG, Çeliktaş A (2017) The local anesthetic and pain relief activity of alkaloids. In: Georgiev V, Pavlov A (eds) Alkaloids: alternatives in synthesis, modification and application. Intechopen, pp 57–65

    Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S–2085S

    Article  PubMed  CAS  Google Scholar 

  • Scher JM, Speakman JB, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) SF Gray. Phytochemistry 65(18):2583–2588

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RS (2004) Paul Ehrlich’s magic bullets. Br J Med 350(11):1079–1080

    CAS  Google Scholar 

  • Segura A, Moreno M, Molina A, Garcı́a-Olmedo F (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett 435(2–3):159–162

    Article  PubMed  CAS  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47(8):2538–2544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA (2012) Does beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simões M, Bennett RN, Rosa EA (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26(6):746–757

    Article  PubMed  CAS  Google Scholar 

  • Sneader W (2005) Drug discovery: a history. Wiley, Hoboken

    Book  Google Scholar 

  • Srivastava J, Chandra H, Nautiyal AR, Kalra SJ (2014) Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech 4(5):451–460

    Article  PubMed  Google Scholar 

  • Stover E, Stange RR, McCollum TG, Jaynes J, Irey M, Mirkov E (2013) Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to Huanglongbing and citrus canker. J Am Soc Hort Sci 138(2):142–148

    Article  CAS  Google Scholar 

  • Subashkumar R, Sureshkumar M, Babu S, Thayumanavan T (2013) Antibacterial effect of crude aqueous extract of Piper betle L. against pathogenic bacteria. Int J Res Pharm Biomed Sci 4:42–46

    Google Scholar 

  • Swamy MK, Rudramurthy GR (2016) Antimicrobial agents: current status and future challenges. Mol Pharm 1(1):1004

    Google Scholar 

  • Swamy MK, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agrotechnology andbiotechnological aspects. Ind Crop Prod 87:161–176

    Article  CAS  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar M (2015) In vitro pharmacological activities and GC-MS analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evid Based Complement Alternat Med 2015:9

    Article  Google Scholar 

  • Swamy MK, Sinniah UR, Akhtar MS (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016:3012462. https://doi.org/10.1155/2016/3012462

    Article  PubMed  PubMed Central  Google Scholar 

  • Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MY, Sinniah UR (2017) GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid Based Complement Alternat Med 2017:1517683. https://doi.org/10.1155/2017/1517683

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahany MA, Hegazy AK, Sayed AM, Kabiel HF, El-Alfy T, El-Komy SM (2010) Study on combined antimicrobial activity of some biologically active constituents from wild Moringa peregrina Forssk. J Yeast Fungal Res 1(1):015–024

    Google Scholar 

  • Tahara S, Ingham JL, Nakahara S, Mizutani J, Harborne JB (1984) Fungitoxic dihydrofuranoisoflavones and related compounds in white lupin, Lupinus albus. Phytochemistry 23(9):1889–1900

    Article  CAS  Google Scholar 

  • Tao NG, Gao Y, Liu Y, Ge F (2010) Carotenoids from the peel of Shatian pummelo (Citrus grandis Osbeck) and its antimicrobial activity. Am Eurasian J Agric Environ Sci 7(1):110–115

    CAS  Google Scholar 

  • Truong NB, Pham CV, Doan HT, Nguyen HV, Nguyen CM, Nguyen HT, Zhang HJ, Fong HH, Franzblau SG, Soejarto DD, Chau MV (2011) Antituberculosis cycloartane triterpenoids from Radermachera boniana. J Nat Prod 74(5):1318–1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turchetti B, Pinelli P, Buzzini P, Romani A, Heimler D, Franconi F, Martini A (2005) In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother Res: Int J Pharmacol Toxicol Eval Nat Prod Deriv 19(1):44–49

    Article  CAS  Google Scholar 

  • Tzortzakis NG, Economakis CD (2007) Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov Food Sci Emerg Technol 8(2):253–258

    Article  CAS  Google Scholar 

  • Uma B, Prabhakar K, Rajendran S (2009) Anticandidal activity of Asparagus racemosus. Indian J Pharm Sci 71(3):342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upton R (ed) (1999) American herbal pharmacopoeia. American Herbal Pharmacopoeia, California

    Google Scholar 

  • Van der Weerden NL, Anderson MA (2013) Plant defensins: common fold, multiple functions. Fungal Biol Rev 26(4):121–131

    Article  Google Scholar 

  • Vasireddy L, Bingle LE, Davies MS (2018) Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PLoS One 13(8):e0201835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vercruysse J, Claerebout E (2001) Treatment vs non-treatment of helminth infections in cattle: defining the threshold. Vet Parasitol 98(1–3):195–214

    Article  PubMed  CAS  Google Scholar 

  • Veyssier P, Bryskier A (2005) Aminocyclitol aminoglycosides. In: Bryskier A (ed) Antimicrobial agents. American Society of Microbiology Press, pp 642–664

    Google Scholar 

  • Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Article  Google Scholar 

  • Wahyuni TS, Widyawaruyanti A, Lusida MI, Fuad A, Fuchino H, Kawahara N, Hayashi Y, Aoki C, Hotta H (2014) Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia 99:276–283

    Article  PubMed  CAS  Google Scholar 

  • Waller PJ (2004) Management and control of nematode parasites of small ruminants in the face of total anthelmintic failure. Trop Biomed 21(2):7–13

    PubMed  CAS  Google Scholar 

  • Wang S, Ng TB, Chen T, Lin D, Wu J, Rao P, Ye X (2005) First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochem Biophys Res Commun 327(3):820–827

    Article  PubMed  CAS  Google Scholar 

  • Wang HM, Chen CY, Chen HA, Huang WC, Lin WR, Chen TC, Lin CY, Chien HJ, Lu PL, Lin CM, Chen YH (2010) Zingiber officinale (ginger) compounds have tetracycline-resistance modifying effects against clinical extensively drug-resistant Acinetobacter baumannii. Phytother Res 24(12):1825–1830

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Bădărau AS, Swamy MK, Shaw S, Maggi F, Da Silva LE, López V, Yeung AW, Mocan A, Atanasov AG (2019) Arctium species secondary metabolites chemodiversity and bioactivities. Front Plant Sci 10:834

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2018) The natural environment: a critical missing link in national action plans on antimicrobial resistance. http://www.who.int/bulletin/volumes/96/12/18-210898/en/

  • Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20(10):469–476

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Ng TB (2005) Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). Int J Biochem Cell Biol 37(8):1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Woodford N, Ellington MJ (2007) The emergence of antibiotic resistance by mutation. Clin Microbiol Infect 13(1):5–18

    Article  PubMed  CAS  Google Scholar 

  • Woodgate RG, Cornell AJ, Sangster NC (2017) Occurrence, measurement and clinical perspectives of drug resistance in important parasitic helminths of livestock. In: Mayers DL, Jack D, Sobel JD, Ouellette M, Kaye KS, Marchaim D (eds) Antimicrobial Drug Resistance. Springer, Cham, pp 1305–1326

    Chapter  Google Scholar 

  • Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 53(34):8840–8869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu SF, Lin CK, Chuang YS, Chang FR, Tseng CK, Wu YC, Lee JC (2012) Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J Viral Hepat 19(5):364–370

    Article  PubMed  Google Scholar 

  • Xie Q, Johnson BR, Wenckus CS, Fayad MI, Wu CD (2012) Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model. J Endod 38(8):1114–1117

    Article  PubMed  Google Scholar 

  • Xu JJ, Wu X, Li MM, Li GQ, Yang YT, Luo HJ, Huang WH, Chung HY, Ye WC, Wang GC, Li YL (2014) Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of Citrus reticulata ‘Chachi’. J Agr Food Chem 62(10):2182–2189

    Article  CAS  Google Scholar 

  • Yang JL, Ha TK, Dhodary B, Pyo E, Nguyen NH, Cho H, Kim E, Oh WK (2015) Oleanane triterpenes from the flowers of Camellia japonica inhibit porcine epidemic diarrhea virus (PEDV) replication. J Med Chem 58(3):1268–1280

    Article  PubMed  CAS  Google Scholar 

  • Zhai H, Pan J, Pang E, Bai B (2014) Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One 9(7):e102760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Lewis K (1997) Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 149(1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, But PP, Ooi VE, Xu HX, Delaney GD, Lee SH, Lee SF (2007) Chemical properties, mode of action, and in vivo anti-herpes activities of a lignin–carbohydrate complex from Prunella vulgaris. Antiviral Res 75(3):242–249

    Google Scholar 

  • Zhang N, Liu Z, Han Q, Chen J, Lv Y (2010) Xanthohumol enhances antiviral effect of interferon α-2b against bovine viral diarrhea virus, a surrogate of hepatitis C virus. Phytomedicine 17(5):310–316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natesan Sudhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthikeyan, G., Swamy, M.K., Viknesh, M.R., Shurya, R., Sudhakar, N. (2020). Bioactive Phytocompounds to Fight Against Antimicrobial Resistance. In: Swamy, M. (eds) Plant-derived Bioactives. Springer, Singapore. https://doi.org/10.1007/978-981-15-1761-7_14

Download citation

Publish with us

Policies and ethics