Skip to main content

Size-Dependent Melting Behavior of Silver Nanoparticles: A Molecular Dynamics Study

  • Conference paper
  • First Online:
Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 240))

Abstract

Thermal behavior of ten silver nanoparticles (NP) with spherical shape and diameter from 4.8 to 24.5 nm has been investigated by the molecular dynamics (MD) simulations. The structural changes in nanoparticles have been studied within the temperatures from 300 to 2500 K. The melting point has been detected from the temperature dependencies of Lindemann index and potential energy, which were calculated during the simulation process in the chosen temperature range. Obtained data show that melting of the Ag nanoparticles has occurred at temperatures of about 1000 K for the smallest NP shifting to higher values with the growth of NP size. The investigations reveal that the thermal degradation of the crystal structure of the spherical nanoparticles begins with the surface atoms and propagates to the center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). https://doi.org/10.1021/cr040090g

    Article  Google Scholar 

  2. H. Beitollai, F. Garkani Nejad, S. Tajik, S. Jahani, P. Biparva, Int. J. Nano Dimens. 8, 197 (2017)

    Google Scholar 

  3. M. Khorasani-Motlagh, M. Noroozifar, S. Jahani, Preparation and characterization of nano-sized magnetic particles LaCoO3 by ultrasonic-assisted coprecipitation method. Synth. React. Inorg. Metal-Organ. Nano-Metal Chem. 45, 1591–1595 (2015). https://doi.org/10.1080/15533174.2015.1031010

    Article  Google Scholar 

  4. H.M. Moghaddam, H. Beitollahi, S. Tajik, S. Jahani, H. Khabazzadeh, R. Alizadeh, Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russ. J. Electrochem. 53, 452–460 (2017). https://doi.org/10.1134/S1023193517050123

    Article  Google Scholar 

  5. R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012). https://doi.org/10.1021/cr100449n

    Article  Google Scholar 

  6. H.A. Alarifi, M. Atis C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J. Phys. Chem. C 117, 12289–12298 (2013). https://doi.org/10.1021/jp311541c

    Article  Google Scholar 

  7. M.H.S. Poor, M. Khatami, H. Azizi, H., Y. Abazari, Cytotoxic activity of biosynthesized Ag nanoparticles by Plantago major towards a human breast cancer cell line. Rend. Lincei 28, 693–699 (2017). https://doi.org/10.1007/s12210-017-0641-z

    Article  Google Scholar 

  8. M. Khatami, S.M. Mortazavi, Z.K. Farahani, A. Amini, E. Amini, H. Heli, Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran. J. Biotechnol. 15, 95–101 (2017). https://doi.org/10.15171/ijb.1436

    Article  Google Scholar 

  9. Z.U.H. Khan, A. Khan, Y. Chen, A.U. Khan, N.S. Shah, N. Muhammad, B. Murtaza, K. Tahir, F.U. Khan, P. Wan, Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J. Alloys Compd. 725, 869–876 (2017). https://doi.org/10.1016/j.jallcom.2017.07.222

    Article  Google Scholar 

  10. A.I. López-Lorente, B.M. Simonet, M. Valcárcel, Analytical potential of hybrid nanoparticles. Anal. Bioanal. Chem. 399, 43–54 (2011). https://doi.org/10.1007/s00216-010-4110-0

    Article  Google Scholar 

  11. A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 229, 80–107 (2016). https://doi.org/10.1016/j.cis.2015.12.008

    Article  Google Scholar 

  12. M. Tsuji, N. Miyamae, S. Lim, K. Kimura, X. Zhang, S. Hikino, M. Nishio, Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Crys. Growth Des. 6, 1801–1807 (2006). https://doi.org/10.1021/cg060103e

    Article  Google Scholar 

  13. Z. Yang, X. Yang, Z. Xu, Molecular Dynamics simulation of the melting behavior of Pt–Au nanoparticles with core-shell structure. J. Phys. Chem. C 112, 4937–4947 (2008). https://doi.org/10.1021/jp711702y

    Article  Google Scholar 

  14. S.J. Mejía-Rosales, C. Fernández-Navarro, E. Pérez-Tijerina, Two-stage melting of Au–Pd nanoparticles. J. Phys. Chem. B 110, 12884–12889 (2006). https://doi.org/10.1021/jp0614704

    Article  Google Scholar 

  15. Q. Jiang, S. Zhang, M. Zhao, Size-dependent melting point of noble metals. Mater. Chem. Phys. 82, 225–227 (2003). https://doi.org/10.1016/S0254-0584(03)00201-3

    Article  Google Scholar 

  16. I.A. Lyashenko, V.N. Borysiuk, N.N. Manko, Statistical analysis of self-similar behaviour in the shear induced melting model. Condens. Matter Phys. 17, 23003 (2014). https://doi.org/10.5488/CMP.17.23003

    Article  Google Scholar 

  17. A.I. Olemskoi, O.V. Yushchenko, V.N. Borisyuk, T.I. Zhilenko, YuO Kosminska, V.I. Perekrestov, Hierarchical condensation near phase equilibrium. Phys. A 391, 3277–3284 (2012). https://doi.org/10.1016/j.physa.2011.10.027

    Article  Google Scholar 

  18. I.A. Lyashenko, A.V. Khomenko, A.M. Zaskoka, Hysteresis behavior in the stick-slip mode at the boundary friction. Tribol. Trans. 56, 1019–1026 (2013). https://doi.org/10.1080/10402004.2013.819541

    Article  Google Scholar 

  19. O.I. Olemskoi, S.M. Danyl’chenko, V.M. Borysyuk, I.O. Shuda, Metallofiz. Noveishie Tekhnol. 31, 777 (2009)

    Google Scholar 

  20. I.A. Lyashenko, Tribological properties of dry, fluid, and boundary friction. Tech. Phys. 6, 701–707 (2011). https://doi.org/10.1134/S1063784219080140

    Article  Google Scholar 

  21. Y. Zhao, R.E. Smalley, B.I. Yakobson, Coalescence of fullerene cages: topology, energetics, and molecular dynamics simulation. Phys. Rev. B 66, 195409 (2002). https://doi.org/10.1103/PhysRevB.66.195409

    Article  ADS  Google Scholar 

  22. K. Zhang, G.M. Stocks, J. Zhong, Melting and premelting of carbon nanotubes. Nanotechnology 18, 285703 (2007). https://doi.org/10.1088/0957-4484/18/28/285703

    Article  Google Scholar 

  23. R. Huang, Y-H Wen, G.-F Shao, Z-Z Zhu, S.-G. Sun, Thermal stability and shape evolution of tetrahexahedral Au–Pd core-shell nanoparticles with high-index facets. J. Phys. Chem. C 117, 6896–6903 (2013). https://doi.org/10.1021/jp401423z

    Article  Google Scholar 

  24. L. Lu, G. Burkey, I. Halaciuga, D.V. Goia, Core-shell gold/silver nanoparticles: Synthesis and optical properties. J. Colloid Interface Sci. 392, 90–95 (2013). https://doi.org/10.1016/j.jcis.2012.09.057

    Article  ADS  Google Scholar 

  25. O.V. Maksakova, S.S. Grankin, O.V. Bondar, Ya.O. Kravchenko, D.K. Yeskermesov, A.V. Prokopenko, N.K. Erdybaeva, B. Zhollybekov, J. Nano-Electron. Phys. 7, 04098 (2015)

    Google Scholar 

  26. A.D. Pogrebnjak, A.P. Shpak, N.A. Azarenkov, V.M. Beresnev, Structures and properties of hard and superhard nanocomposite coatings. Phys.-Usp. 52, 29–54 (2009). https://doi.org/10.3367/UFNe.0179.200901b.0035

    Article  ADS  Google Scholar 

  27. V.I. Lavrentiev, A.D. Pogrebnjak, High-dose ion implantation into metals. Surf. Coatings Technol. 99, 24–32 (1998). https://doi.org/10.1016/S0257-8972(97)00122-9

    Article  Google Scholar 

  28. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  29. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005–4015 (2001). https://doi.org/10.1016/s1359-6454(01)00287-7

    Article  Google Scholar 

  30. F.A. Lindemann, Physik Z 11, 609 (1910)

    Google Scholar 

  31. H.J.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, J.R. Haak, Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  ADS  Google Scholar 

  32. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  33. D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, New York, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

Presented work was financially supported by Ministry of Education and Science of Ukraine (Project No. 0117U003923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maksakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Natalich, B., Kravchenko, Y., Maksakova, O., Borysiuk, V. (2020). Size-Dependent Melting Behavior of Silver Nanoparticles: A Molecular Dynamics Study. In: Pogrebnjak, A., Bondar, O. (eds) Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics, vol 240. Springer, Singapore. https://doi.org/10.1007/978-981-15-1742-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1742-6_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1741-9

  • Online ISBN: 978-981-15-1742-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics