Skip to main content

Electrical and Magnetic Behavior of GdOH Thin Films: A Search for Hydrogen Anion Superconductivity

  • Conference paper
  • First Online:
Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 240))

Abstract

Anomalous resistive and magnetic behavior of GdOH thin films, which belong to the novel class of materials known as oxyhydrides, is reported. The oxyhydrides contain hydrogen in its rare negatively-charged anion state in combination with oxygen, which is also in the anion state. A range of GdOH films prepared on glass and single-crystalline substrates demonstrate a resistive transition from an insulating to conducting state with decrease of resistance starting as high as at about 200 K. At room temperature, the resistance per square area for the best GdOH films of the thickness of 200 nm is about 100 Ω, which is close to the resistance of the films of high-temperature superconductors of similar thickness. Apparent zero resistance is observed at about 40 K. Magneto-optical imaging registers effect of trapping magnetic flux typical for the superconducting state. The possible anion superconductivity is discussed in connection with recently published papers on near-room-temperature superconductivity in hydrides at high pressure and hydrogen-based superconductivity in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.Z. Kresin, Paths to room-temperature superconductivity​, J. Supercond. Novel Magn. 31, 611 (2017)

    Article  Google Scholar 

  2. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525, 73 (2015)

    Article  ADS  Google Scholar 

  3. A.P. Drozdov, V.S. Minkov, S.P. Besedin, P.P. Kong, M.A. Kuzovnikov, D.A. Knyazev, M.I. Eremets, Condensed Matter. arXiv (2018). https://arxiv.org/ftp/arxiv/papers/1808/1808.07039.pdf

  4. M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures, Phys. Rev. Lett. 122, 027001 (2019)

    Article  ADS  Google Scholar 

  5. W.A. Little, Possibility of synthesizing an organic superconductor, Phys. Rev. 134, 1416 (1964)

    Article  ADS  Google Scholar 

  6. P. Mikheenko, Possible superconductivity in the brain, J. Supercond. Novel Magn. 32, 1121 (2019)

    Article  Google Scholar 

  7. H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi, J.M. Rondinelli, K.R. Poeppelmeier, New chemistry of transition metal oxyhydrides, Nat. Commun. 9, 772 (2018)

    Article  ADS  Google Scholar 

  8. Y. Kobayashi, O. Hernandez, C. Tassel, H. Kageyama, Expanding frontiers in materials chemistry and physics with multiple anions, Sci. Technol. Adv. Mater. 18, 905 (2017)

    Article  Google Scholar 

  9. T.H. Johansen, D.V. Shantsev (eds.), Magneto-Optical Imaging (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  10. H. Hosono, S. Matsuishi, Superconductivity induced by hydrogen anion substitution in 1111-type iron arsenides, Curr. Opin. Solid St. M. 17, 49 (2013)

    Article  Google Scholar 

  11. J. Matsumoto, K. Hanzawa, M. Sasase, S. Haindl, T. Katase, H. Hiramatsu, H. Hosono, Condensed Matter. arXiv (2019). https://arxiv.org/ftp/arxiv/papers/1903/1903.11819.pdf

Download references

Acknowledgements

E. M. B and S. Z. K has received funding from M-ERA.net project “TESTIMONIES” from the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mikheenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mikheenko, P., Baba, E.M., Karazhanov, S. (2020). Electrical and Magnetic Behavior of GdOH Thin Films: A Search for Hydrogen Anion Superconductivity. In: Pogrebnjak, A., Bondar, O. (eds) Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer Proceedings in Physics, vol 240. Springer, Singapore. https://doi.org/10.1007/978-981-15-1742-6_1

Download citation

Publish with us

Policies and ethics