Skip to main content

Clustering Effects via Hawkes Processes

  • Chapter
  • First Online:
From Probability to Finance

Part of the book series: Mathematical Lectures from Peking University ((MLPKU))

Abstract

Hawkes processes are a class of self-exciting point processes. They are characterized by the presence of clusters of jumps, which can be found in many natural phenomena (from biology to seismology) as well as in finance. First, we study the general properties of point processes. Then, we propose a constructive approach to Hawkes processes. Main properties as well as extensions are also studied. Special attention has been paid to the application of Hawkes processes in finance. We also propose to illustrate theses processes as a special case of branching processes with immigration.

Bernis—The analysis and views expressed in this chapter are those of the authors and do not necessarily reflect those of Natixis Assurances.

Scotti—This research is supported by Institute Europlace de Finance, research program “Clusters and Information Flow: Modelling, Analysis and Implications”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfonsi, A., Blanc, P.: Extension and calibration of a Hawkes-based optimal execution model. Mark. Microstruct. Liq. 2, 1650005 (2016)

    Google Scholar 

  2. Alfonsi, A., Blanc, P.: Dynamic optimal execution in a mixed-market-impact Hawkes price model. Financ. Stoch. 20(1), 183–218 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bacry, E., Dayri, K., Muzy, J.: Non-parametric kernel estimation for symmetric hawkes processes. Application to high frequency financial data. Eur. Phys. J. B Condens. Matter Complex Syst. 85.5, 1–12 (2012)

    Google Scholar 

  4. Bacry, E., Delattre, S., Hoffmann, M., Muzy, J.: Some limit theorems for Hawkes processes and application to financial statistics. Stoch. Process. Their Appl. 123–127, 2475–2499 (2013)

    Google Scholar 

  5. Bacry, E., Muzy, J.: Hawkes model for price and trades high-frequency dynamics. Quant. Financ. 14–17, 1147–1166 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bernis, G., Salhi, K., Scotti, S.: Sensitivity analysis for marked Hawkes processes—application to CLO pricing (2017). Available via SSRN:https://ssrn.com/abstract=2989193

  7. Bouleau, N.: Processus Stochastiques et Applications. Hermann, Paris (1988)

    MATH  Google Scholar 

  8. Brémaud, P., Massoulié, L.: Stability of Nonlinear Hawkes Processes. Ann. Probab. 24(3), 563–1588 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Callegaro, G., Gaigi, M.H., Scotti, S., Sgarra, C.: Optimal investment in markets with over and under-reaction to information. Math. Financ. Econ. 11(3), 299–322 (2017)

    Article  MathSciNet  Google Scholar 

  10. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Financ. 2(4), 61–73 (1999)

    Article  Google Scholar 

  11. Chevalier, E., Ly Vath, V., Roch, A., Scotti, S.: Optimal execution cost for liquidation through a limit order market. Int. J. Theor. Appl. Financ. 19(1), 1650004 (2016)

    Google Scholar 

  12. Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rate. Econometrica 53, 385–408 (1985)

    Article  MathSciNet  Google Scholar 

  13. Da Fonseca, J., Zaatour, R.: Hawkes processes: fast calibration, application to trade clustering and diffusive limit. J. Futur. Mark. 34, 548–579 (2014)

    Google Scholar 

  14. Dassios, A., Zhao H.: A generalized contagion process with an application to credit risk. Int. J. Theor. Appl. Financ. 20.01, 1750003 (2017)

    Google Scholar 

  15. Dawson, D.A., Li, Z.: Skew convolution semigroups and affine Markov processes. Ann. Probab. 34, 1103–1142 (2006)

    Article  MathSciNet  Google Scholar 

  16. Dawson, A., Li, Z.: Stochastic equations, flows and measure-valued processes. Ann. Probab. 40(2), 813–857 (2012)

    Article  MathSciNet  Google Scholar 

  17. Dellacherie, C., Meyer, P.A.: Probabilités et Potentiles—Chapitre I à IV. Hermann, Paris (1978)

    Google Scholar 

  18. Duffie, D.: A short course on credit risk modeling with affine processes. J. Bank. Financ. 29, 2751–2802 (2005)

    Article  Google Scholar 

  19. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)

    Article  MathSciNet  Google Scholar 

  20. Duffie, D., Filipovic, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    Article  MathSciNet  Google Scholar 

  21. Errais, E., Giesecke, K., Goldberg, L.: Affine point processes and portfolio credit risk. SIAM J. Financ. Math. 1, 642–665 (2010)

    Article  MathSciNet  Google Scholar 

  22. Fi\(\check{\text{c}}\)ura, M.: Forecasting jumps in the intraday foreign exchange rate time series with Hawkes processes and logistic regression. In: Procházka, D. (ed.) New Trends in Finance and Accounting, pp. 125–137. Springer, New York (2017)

    Google Scholar 

  23. Filimonov, V., Sornette, D.: Quantifying reflexivity in financial markets: toward a prediction of flash crashes. Phys. Rev. E 85, 056108 (2012)

    Google Scholar 

  24. Filipovic, D.: A general characterization of one factor affine term structure models. Financ. Stoch. 5, 389–412 (2001)

    Article  MathSciNet  Google Scholar 

  25. Hainault, D.: A model for interest rates with clustering effects. Quant. Financ. 16, 1203–1218 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hardiman, S., Bercot, N., Bouchaud, J.: Critical reflexivity in financial markets: a Hawkes process analysis. Eur. Phys. J. B Condens. Matter Complex Syst. 86–10, 1–9 (2013)

    Google Scholar 

  27. Harris, T.E.: The theory of branching processes. Dover Phoenix Editions, Mineola (2002)

    Google Scholar 

  28. Hawkes, A.G.: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)

    Article  MathSciNet  Google Scholar 

  29. Hawkes, A.G., Adamopoulos, L.: Cluster models for earthquakes—regional comparisons. Bull. Int. Stat. Inst. 45, 454–461 (1973)

    Google Scholar 

  30. Hawkes, A.G., Oakes, D.: Spectra of some self-exciting and mutually exciting point processes. J. Appl. Probab. 11, 493–503 (1974)

    Article  Google Scholar 

  31. Jacod, J., Shiryaev, N.: Limit Theorems for Stochastic Processes. Springer, Heidelberg (2003)

    Book  Google Scholar 

  32. Jaisson, T., Rosenbaum, M.: Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab. 25–2, 600–631 (2015)

    Article  MathSciNet  Google Scholar 

  33. Jiao, Y., Ma, C., Scotti, S.: Alpha-CIR model with branching processes in sovereign interest rate modeling. Financ. Stoch. 21(3), 789–813 (2017)

    Article  MathSciNet  Google Scholar 

  34. Jiao, Y., Ma, C., Scotti, S., Sgarra, C.: A branching process approach to power markets. Energy Econ. 79, 144–156 (2019)

    Article  Google Scholar 

  35. Kawazu, K., Watanabe, S.: Branching processes with immigration and related limit theorems. Theory Probab. Its Appl. I(1), 36–54 (1971)

    Article  Google Scholar 

  36. Klebaner, F., Liptser, G.: When a stochastic exponential is a true martingale. Extension of the Bene\(\check{\text{ s }}\) method. Theory Probab. Appl. 58(1), 38-DC362 (2012)

    Google Scholar 

  37. Kyprianou, A.: Introductory lectures on fluctuations of Lévy processes with applications. Springer Science & Business Media, Berlin (2006)

    Google Scholar 

  38. Lamperti, J.: Continuous state branching processes. Bull. Am. Math. Soc. 73(3), 382–386 (1967)

    Article  MathSciNet  Google Scholar 

  39. Last, G., Brandt, A.: Marked Point Processes on the Real Line—The Dynamic Approach. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  40. Le Gall, J.-F.: Spatial Branching Processes. Random Snakes and Partial Differential Equations. Lectures in Mathematics. Birkhauser, ETH Zurich (1999)

    Book  Google Scholar 

  41. Lemonnier, R., Vayatis N.: Nonparametric Markovian learning of triggering kernels for mutually exciting and mutually inhibiting multivariate Hawkes processes. In: Machine Learning and Knowledge Discovery in Databases, pp. 161–176. Springer, Berlin (2014)

    Google Scholar 

  42. Li, Z. Continuous-state branching processes (2012). arXiv:1202.3223

  43. Ma, Y., Xu, W.: Structural credit risk modelling with Hawkes jump diffusion processes. J. Comput. Appl. Math. 303, 69–80 (2016)

    Article  MathSciNet  Google Scholar 

  44. Mancini, C.: Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat. 36, 270–296 (2009)

    Article  MathSciNet  Google Scholar 

  45. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36–4, 394–419 (1963)

    Article  Google Scholar 

  46. Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988)

    Article  Google Scholar 

  47. Ozaki, T.: Maximum likelihood estimation of Hawkes’ self exciting processes. Ann. Inst. Statist. Math. 31, 145–155 (1979)

    Article  MathSciNet  Google Scholar 

  48. Peng, X., Kou, S.: Default clustering and valuation of collateralized debt obligations (2009)

    Google Scholar 

  49. Protter, Ph: Stochastic Integration and Differential Equations. Springer, Heidelberg (1992)

    Google Scholar 

  50. Watson, H.W., Galton, F.: On the probability of the extinction of families. J. Anthropol. Inst. G. B. Irel. 4, 138–144 (1875)

    Google Scholar 

  51. Zheng, B., Roueff, F., Abergel, F.: Modelling bid and ask prices using constrained hawkes processes: ergodicity and scaling limit. SIAM J. Financ. Math. 5–1, 99–136 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Scotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernis, G., Scotti, S. (2020). Clustering Effects via Hawkes Processes. In: Jiao, Y. (eds) From Probability to Finance. Mathematical Lectures from Peking University. Springer, Singapore. https://doi.org/10.1007/978-981-15-1576-7_3

Download citation

Publish with us

Policies and ethics