Skip to main content

Novel Application of Artificial Neural Network Techniques for Prediction of Air Pollutants Using Stochastic Variables for Health Monitoring: A Review

  • Chapter
  • First Online:
Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1096))

Abstract

Due to population growth and urbanization, air pollutant (AP) in environment is increasing day by day which creates a lot of health problem. AP data provide information about quality of air and health risk in surrounding which is important for environmental management. In this chapter, a review is made on air pollutant prediction using ANN techniques which are dependent on types of prediction intervals, i.e. monthly, daily and hourly. It is found that influence of different input variables, training algorithm and architecture changes prediction accuracy of ANN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANN:

Artificial Neural Network

PCA:

Principle Component Analysis

AP:

Air Pollutant

PM:

Particulate Matters

CO2:

Carbon di oxide

RBF:

Radial Basis Function

CO:

Carbon Monoxide

R:

Regression

D:

Day

RH:

Relative humidity

H:

Hour

RSPM:

Respirable Suspended PM

LM:

Levenberg Marquardt

RMSE:

Root Mean Square Error

MSE:

Mean Square Error

SR:

Solar Radiation

M:

Month

SO2:

Sulphur di oxide

MLR:

Multiple Linear Regression

T:

Temperature

NO:

Nitrogen Oxide

TSP:

Total Suspended Particles

NO2:

Nitrogen di oxide

WD:

Wind Direction

P:

Pressure

WS:

Wind Speed

References

  1. Niharika, M. Venkatdri, A novel sir quality prediction model using artificial neural networks. Int. J. Eng. Res. Technol. 3(2), 2278–0181

    Google Scholar 

  2. Niharika, M, Venkatadri, P.S. Rao, A survey on air quality forecasting techniques. Int. J. Comput. Sci. Inform. Technol. 5(1), 103–7

    Google Scholar 

  3. F.I. Khan, R. Sadiq, Risk-based prioritization of air pollution monitoring using fuzzy synthetic evaluation technique. Environ. Monit. Assess. 105, 261–283 (2005)

    Article  Google Scholar 

  4. https://www.nasa.gov/topics/earth/features/health-sapping.html. [Accessedon 7 July 2017]

  5. F. Benvenuto, A. Marani, Neural networks for environmental problems: data quality control and air pollution nowcasting. Global Nes. Int. J. 2(3), 281–292

    Google Scholar 

  6. P.J.G. Nieto, J.C.A. Antón, J.A.V. Vilán, E. García-Gonzalo, Air quality modeling in the Oviedo urban area (NW Spain) by using multivariate adaptive regression splines. Environ. Sci. Pollut. Res. 22, 6642–6659 (2015)

    Article  Google Scholar 

  7. M. Sarkhosh, J.B. Ghasemi, M. Ayati, A quantitative structure—property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods. Chem. Cent. J. 6, 54–61 (2012)

    Article  Google Scholar 

  8. A. Qazi, H. Fayaz, A. Wadi, R.G. Raj, N.A. Rahim, W.A. Khan, The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J. Clean. Prod. 104, 1–12 (2015)

    Article  Google Scholar 

  9. A.K. Yadav, H. Malik, S.S. Chandel, Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew. Sustain. Energy Rev. 31, 509–519 (2014)

    Article  Google Scholar 

  10. S.K.H. Chow, E.W.M. Lee, D.H.W. Li, Short-term prediction of photovoltaic energy generation by intelligent approach. Energy Build. 55, 660–667 (2012)

    Article  Google Scholar 

  11. M. Frederick, Neuroshell 2 Manual, Ward Systems Group Inc. (1996)

    Google Scholar 

  12. E. Weber, Air Pollution Assessment Modelling Methodology, NATO, Challenges of Modern Society, vol. 2 (Plenum Press, 1982)

    Google Scholar 

  13. G. Corani, Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol. Model. 185(513–29) (2005)

    Article  Google Scholar 

  14. L.H. Tecer, Prediction of SO2 and PM concentrations in a coastal mining area (Zonguldak, Turkey) using an artificial neural network. J. Environ. Stud. 16(2), 633–638 (2007)

    Google Scholar 

  15. H. Xie, F. Ma, Q. Bai, Prediction of indoor air quality using artificial neural networks, in Fifth International Conference on Natural Computation (2009), pp. 415–18

    Google Scholar 

  16. R. Mechgoug, T.A. Ahmed, L. Cherroun, Optimization of neural predictor for air pollution, in World Congress on Engineering (2012), pp. 12078–958

    Google Scholar 

  17. A. Azid, H. Juahir, T.M. Latif, M.S. Zain, R.M. Osman, Feed-forward artificial neural network model for air pollutant index prediction in the Southern Region of Peninsular Malaysia. Energy J. Environ. Prot. 7(4), 1–10 (2013)

    Google Scholar 

  18. A.M.K. Hossain, 2014 Predictive ability improved neural network models to stimulate pollutant dispersion. Int. J. Atmos. Sci. Res. Article No. 141923, 1–12

    Google Scholar 

  19. V.S, Kottur, S.S. Mantha, An integrated model using artificial neural network (ANN) and Kriging for forecasting air pollutants using meteorological data. Int. J. Adv. Res. Comput. Commun. Eng. 4(1), (2015) ISSN 2319-5940

    Google Scholar 

  20. K.P. Moustris, I.C. Ziomas, A.G. Paliatsos, 3-Day-Ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water Air Soil Pollut. 209, 29–43 (2010)

    Article  Google Scholar 

  21. J. He, Y. Yu, Y. Xie, H. Mao, L. Wu, N. Liu, S. Zhao, Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Pollut. 227(235) (2016)

    Google Scholar 

  22. W. Ding, J. Zhang, Y. Leung, Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks. Environ. Sci. Pollut. Res. 23, 19481–19494 (2016)

    Article  Google Scholar 

  23. K. Prasad, A.K. Gorai, P. Goyal, Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos. Environ. 128, 246–262 (2016)

    Article  Google Scholar 

  24. V. Yadav, S. Nath, Novel hybrid model for daily prediction of PM10 using principal component analysis and artificial neural network. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-018-1999-x

    Article  Google Scholar 

  25. H.S. Sohn, C.S. Oh, K.Y. Yeo, Prediction of air pollutants by using an artificial neural network. J. Chem. Eng. 16(3), 82–87 (1999)

    Google Scholar 

  26. M.A. Elangasinghe, N. Singhal, K.N. Dirks, J.A. Salmond, S. Samarasinghe, Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modeling and k-means clustering. Atmos. Environ. 94(106–16) (2014)

    Google Scholar 

  27. Z.W. Lu, W.J. Wang, Y.H. Fan, T.Y.A. Leung, B.Z. Xu, K.C.J. Wong, Prediction of pollutant levels in Causeway Bay area of Hong Kong using an improved neural network model. J. Environ. Eng. 128(22), 1147–1157 (2001)

    Google Scholar 

  28. A. Challoner, F. Pilla, L. Gill, Prediction of indoor air exposure from outdoor air quality using an artificial neural network model for inner city commercial buildings. Int. J. Environ. Res. Public Health 12, 15233–15253 (2015)

    Article  Google Scholar 

  29. A. Russo, F. Raichel, G.P. Lind, Air quality prediction using optimal neural networks with stochastic variables. J. Atmos. Environ. 79, 822–830 (2013)

    Article  Google Scholar 

  30. D.A. Syafei, A. Fujwara, J. Zhang, Prediction model of air pollutant levels using linear model with component analysis. Int. J. Environ. Sci. Dev. 6(7), 1–7 (2015)

    Article  Google Scholar 

  31. W.Z. Lu, W.J. Wang, X.K. Wang, Z.B. Xu, A.Y.T. Leung, Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong. Environ. Monitor. Assess. 87, 235–254 (2003)

    Article  Google Scholar 

  32. M.W. Gardner, S.R. Dorling, Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33, 709–719 (1993)

    Article  Google Scholar 

  33. Y. Song, S. Qin, J. Qu, F. Liu, The forecasting research of early warning systems for atmospheric pollutants: a case in Yangtze river delta region. Atmos. Environ. 118, 58–69 (2015)

    Article  Google Scholar 

  34. J. Kukkonena, L. Partanena, A. Karppinena, J. Ruuskanenb, H. Junninenb, M. Kolehmainenb, H. Niskab, S. Dorling, T. Chattertonc, R. Foxalld, G. Cawleyd, Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 37, 4539–4550 (2003)

    Article  Google Scholar 

  35. J. Hooyberghsa, C. Mensinka, G. Dumontb, F. Fierensb, O. Brasseurc, A neural network forecast for daily average PM10 concentrations in Belgium. Atmos. Environ. 39, 3279–3289 (2005)

    Article  Google Scholar 

  36. H. Niska, M. Rantama, T. Hiltunen, A. Karppinen, J. Kukkonen, J. Ruuskanen, M. Kolehmainen, Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmos. Environ. 39, 6524–6536 (2005)

    Article  Google Scholar 

  37. P. Perez, J. Reyes, An integrated neural network model for PM10 forecasting. Atmos. Environ. (40), 2845–51 (2006)

    Article  Google Scholar 

  38. D. Mishra, P. Goyal, A. Upadhyay, Artificial intelligence based approach to forecast PM2.5 during haze episodes: a case study of Delhi, India. Atmos. Environ. 102, 239–248 (2015)

    Article  Google Scholar 

  39. M.A. Elangasinghe, N. Singhal, K.N. Dirks, A. Jennifer, J.A. Salmond, Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 5, 696–708 (2014)

    Article  Google Scholar 

  40. K.P. Singh, S. Gupta, P. Rai, Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 80, 426–437 (2013)

    Article  Google Scholar 

  41. S.M.S. Nagendra, E.M. Khare, Modelling urban air quality using artificial neural network. Clean Technol. Environ. Policy 7, 116–126 (2005)

    Article  Google Scholar 

  42. I.J. Turias, F.J. González, M.L. Martin, P.L. Galindo, Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ. Monit. Assess. 143, 131–146 (2008)

    Article  Google Scholar 

  43. M. Ragosta, M.D. Emilio, G.A. Giorgio, Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network. Environ. Monit. Assess. 187(307) (2015)

    Google Scholar 

  44. D. Dunea, A. Pohoata, S. Iordache, Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess. 187(477) (2015)

    Google Scholar 

  45. A. Azid, H. Juahir, M.E. Toriman, M.K.A. Kamarudin, A.S.M. Saudi, C.N.C. Hasnam, N. Azlina, A. Aziz, F. Azaman, M.T. Latif, S.F.M. Zainuddin, M.R. Osman, M. Yamin, Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water Air Soil Pollut. 225(2063) (2014)

    Google Scholar 

  46. M. Arhami, N. Kamali, M.M. Rajabi, Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. Res. 20, 4777–4789 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Science and Technology (DST), New Delhi-110016 India for providing inspire fellowship with Ref. No. DST/INSPIRE Fellowship/2016/IF160676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibha Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V., Nath, S. (2020). Novel Application of Artificial Neural Network Techniques for Prediction of Air Pollutants Using Stochastic Variables for Health Monitoring: A Review. In: Malik, H., Iqbal, A., Yadav, A. (eds) Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems. Advances in Intelligent Systems and Computing, vol 1096. Springer, Singapore. https://doi.org/10.1007/978-981-15-1532-3_10

Download citation

Publish with us

Policies and ethics