Skip to main content

Phenomics-Assisted Breeding: An Emerging Way for Stress Management

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

The challenges posed by several known and unknown biotic and abiotic stresses arising due to increasing population, global warming, and other potential climatic factors have severely affected the growth and yield of many agriculturally important crops. Abiotic stresses such as drought, flood, salinity, high temperature, etc. not only influence the physiology of plants but also accompany occurrence and spread of various pathogens, insects and weeds, which may sometimes lead to a famine-like situation. In this context, understanding the crops’ response towards different stress conditions and the underlying stress resistance mechanisms has become a challenging task for plant breeder in breeding stress-resistant or climate resilient varieties. With the advent of molecular technologies and functional genomics over past decade, whole genome sequence of many crops is now available and has simplified the process of cloning and characterization of key genes governing important agronomic traits along with the physiological pathways underlying them. But to appraise the full potential of a genotype under stress condition, it is important to evaluate the response in terms of phenotypic behavior and the elements coordinating such responses. So, this post-genomic era has given rise to the need of advanced phenotyping tools for efficient utilization of the vast amount of genomic data in climate resilient breeding. The advanced phenotyping approaches use different imaging techniques that record interaction between plant and light which are transmitted, reflected or absorbed and provide measurements related to quantitative phenotypic traits with desired accuracy and precision. The various imaging techniques record the interaction between plants and light like photons, which are transmitted, reflected or absorbed and provide the desired level of accuracy and precision in measurements related to quantitative phenotypic traits. Visible light imaging, infrared- and thermal-based imaging, fluorescence imaging, spectroscopy imaging, and other integrated imaging techniques are currently in use for precise phenotyping of crops under varied environments. The advanced phenomics tools measure plants’ response to different abiotic stresses in terms of root architecture, chlorophyll content, canopy temperature deficit and other morphological traits along with disease and insect infestation with a great precision without taking much time and simplifying the germplasm screening process to a great extent. Hence, phenomics is an indispensable tool needed to bridge the gap between phenotyping and genotyping that is highly recommended to cope up the climate resilient varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response to simultaneous biotic and abiotic stress. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrao S, Santelia D, Trtılek M, Tester M, Julkowskam MM, Panzarova K (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Backoulou GF, Elliott NC, Giles K, Phoofolo M, Catana V, Mirik M, Michels J (2011) Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors. Comput Electron Agric 78:123–129

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bauriegel E, Giebel A, Herppich WB (2011a) Hyperspectral and chlorophyll fluorescence imaging to analyze the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 11:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich W (2011b) Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric 75:304–312

    Article  Google Scholar 

  • Bergstrasser S, Fanourakis D, Schmittgen S, Cendrero-Mateo MP, Jansen M, Scharr H, Rascher U (2015) HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance transmittance imaging. Plant Methods 11(1):17

    Article  CAS  Google Scholar 

  • Blum A (2006) Drought adaptation in cereal crops: a prologue. In: Ribaut JM (ed) Drought adaptation in cereals. The Haworth Press, Binghamton, pp 3–15

    Google Scholar 

  • Borianne P, Subsol G, Fallavier F, Dardou A, Audebert A (2018) GT-RootS: an integrated software for automated root system measurement from high-throughput phenotyping platform images. Comput Electron Agric 150:328–342

    Article  Google Scholar 

  • Borisjuk L, Rolletschek H, Neuberger T (2012) Surveying the plant’s world by magnetic resonance imaging. Plant J 70:129–146

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Chaerle L, Hagenbeek D, BruyneDe E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol 45:887–896

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Hagenbeek D, BruyneDe E, Van Der Straeten D (2007) Chlorophyll fluorescence imaging for disease-resistance screening of sugarbeet. Plant Cell Tissue Org 91:97–106

    Article  CAS  Google Scholar 

  • Choudhary A, Pandey P, Senthil-Kumar M (2016) Tailored responses to simultaneous drought stress and pathogen infection in plants. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, LSP T (eds) Drought stress tolerance in plants, vol 1. Springer International Publishing, Cham, pp 427–438

    Chapter  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41:877–884

    Article  PubMed  Google Scholar 

  • Din M, Zheng W, Rashid M, Wang S, Shi Z (2017) Evaluating hyperspectral vegetation indices for leaf area index estimation of Oryza sativa L. at diverse phenological stages. Front Plant Sci 8:820

    Article  PubMed  PubMed Central  Google Scholar 

  • DoVale JC, Fritsche-Neto R (2015) Root phenomics. In: Fritsche-Neto R, Borem A (eds) Phenomics. Springer, Cham

    Google Scholar 

  • Duraes F, Gama E, Magalhaes P, Marriel I, Casela C, Oliveira A, Luchiari A, Shanahan J (2002) The usefulness of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminum toxicity tolerance and N use efficiency in maize. In: Proceedings of the Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, pp 356–360

    Google Scholar 

  • Espeland EK, Kettenring KM (2018) Strategic plant choices can alleviate climate change impacts: a review. J Environ Manag 222:316–324

    Article  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  • FAO (2009) How to feed the world in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Finkel E (2009) With ‘Phenomics’, plant scientists hope to shift breeding into overdrive. Science 325:380–381

    Article  CAS  PubMed  Google Scholar 

  • Fiorani F, Rascher U, Jahnke S, Schurr U (2012) Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol 23:227–235

    Article  CAS  PubMed  Google Scholar 

  • Franke J, Menz G (2007) Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis Agric 8:161–172

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Bai G, Stoerger V, Schnable JC (2016) Temporal dynamics of maize plant growth, water use and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput Electron Agric 127:625–632

    Article  Google Scholar 

  • Goggin FL, Lorence A, Topp CN (2015) Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops. Curr Opin Insect Sci 9:69–76

    Article  PubMed  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B (2006) PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169:623–635

    Article  PubMed  Google Scholar 

  • Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamzeh S, Naseri AA, AlaviPanah SK, Mojaradi B, Bartholomeus HM, Clevers JGPW, Behzad M (2013) Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices. Int J Appl Earth Obs Geoinf 21:282–290

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hebert SL, Jia L, Goggin FL (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458–467

    Article  PubMed  Google Scholar 

  • Hillnhutter C, Sikora RA, Oerke EC, Van-Dusschoten D (2012) Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. J Exp Bot 63:319–327

    Article  CAS  PubMed  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:e97047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humplık JF, Lazar D, Husickova A, Spıchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—a review. Plant Methods 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Beuhler J, Minwuyelet S, Bleumler P, Temperton VM, Hombach T, Streun M, Beer S (2009) Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36:902–914

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (2004) Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv Bot Res 41:107–163

    Article  Google Scholar 

  • Jones HG, Stoll M, Santos T, Sousa CD, Chaves MM, Grant OM (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Biol 53:2249–2260

    CAS  Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Article  PubMed  Google Scholar 

  • Jones AM, Danielson JA, Kumar MSN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. elife 3:e01741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kastberger G, Stachl R (2003) Infrared imaging technology and biological applications. Behav Res Methods Instrum Comput 35:429–439

    Article  PubMed  Google Scholar 

  • Kerchev PI, Fentoni B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signaling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  • Kiyomiya S, Nakanishi H, Uchida H, Tsuji A, Nishiyama S, Futatsubashi M, Tsukada H, Ishioka NS, Watanabe S, Ito T, Mizuniwa C (2001) Real time visualization of 13N-translocationin rice under different environmental conditions using positron emitting tracer imaging system. Plant Physiol 125:1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M (2013) Crop plants and abiotic stresses. J Biomol Res Ther 3:e125. https://doi.org/10.4172/2167-7956.1000e125.

    Article  Google Scholar 

  • Kunkeaw S, Tan S, Coaker G (2010) Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race1. Mol Plant Microbe Interact 23:415–424

    Article  CAS  PubMed  Google Scholar 

  • Leinonen I, Grant OM, Tagliavia CPP, Chaves MM, Jones HG (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111

    Article  PubMed  PubMed Central  Google Scholar 

  • Long SP, Marshal-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio JL, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Bielenberger DF, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Mahalingam R (ed) (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants. Combined stresses in plants. Springer International Publishing, Cham, pp 1–25

    Google Scholar 

  • Mahlein AK (2016) Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–251

    Article  PubMed  Google Scholar 

  • Maphosa L, Thoday-Kennedy E, Vakani J, Phelan A, Badenhorst P, Slater A, Spangenberg G, Kant S (2016) Phenotyping wheat under salt stress conditions using a 3D laser scanner. Isr J Plant Sci 1:1–8

    Article  Google Scholar 

  • McDonald A, Riha S, DiTommasob A, DeGaetanoa A (2009) Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ 130:131–140

    Article  Google Scholar 

  • Meng R, Saade S, Kurtek S, Berger B, Brien C, Pillen K, Tester M, Sun Y (2017) Growth curve registration for evaluating salinity tolerance in barley. Plant Methods 13:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Moller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A, Ostrovsky V, Sprintsin M, Cohen S (2007) Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot 58:827–838

    Article  CAS  PubMed  Google Scholar 

  • Mulla DJ (2013) Twenty-five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371

    Article  Google Scholar 

  • Munns R, James RA, Sirault X (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Mutka AM, Bart RS (2015) Image-based phenotyping of plant disease symptoms. Front Plant Sci 5:1–8

    Article  Google Scholar 

  • Nabity PD, Zavala JA, DeLucia EH (2009) Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot 103:655–663

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of P availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    CAS  PubMed  Google Scholar 

  • Neilson EH, Edwards AM, Blomstedt CK, Berger B, Moller BL, Gleadow RM (2015) Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C-4 cereal crop plant to nitrogen and water deficiency over time. J Exp Bot 66:1817–1832. https://doi.org/10.1093/jxb/eru526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmond B, Ananyev G, Berry J, Langdon C, Kolber Z, Lin G, Monson R, Nichol C, Rascher U, Schurr U, Smith S (2004) Changing the way we think about global change research: scaling up in experimental ecosystem science. Glob Chang Biol 10:393–407

    Article  Google Scholar 

  • Palta JA, Kobata T, Turner NC, Fillery IR (1994) Remobilization of carbon and nitrogen in wheat as influenced by post anthesis water deficits. Crop Sci 34:118–124

    Article  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:1–15

    PubMed  PubMed Central  Google Scholar 

  • Paproki A, Sirault X, Berry S, Furbank R, Fripp J (2012) A novel mesh processing based technique for3D plant analysis. BMC Plant Biol 12:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Penuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change onweeds in agriculture: a review. Agric Sustain Dev 34:707–721

    Article  Google Scholar 

  • Polomsky J, Kuhn N (2002) Root research methods. In: Waisel Y, Eshel A, Kafkafi U (eds) Plantroots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 447–487

    Google Scholar 

  • Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B, Munns R, Atkin OK, Tardieu F, Pons TL (2012) The art of growing plants for experimental purposes: a practical guide for the plant biologist. Funct Plant Biol 39:821–838

    Article  PubMed  Google Scholar 

  • Poss JA, Russell WB, Grieve CM (2006) Estimating yields of salt- and water stressed forages with remote sensing in the visible and near infrared. J Environ Qual 35:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M (2015) Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front Plant Sci 6:619

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramu VS, Paramanantham A, Ramegowda V, Mohan-Raju B, Udaya-Kumar M, Senthil-Kumar M (2016) Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined-biotic and abiotic stress tolerance mechanisms. PLoS One 11(6):e0157522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascher U, Heutt MT, Siebke K, Osmond B, Beck F, Leuttge U (2001) Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. Proc Natl Acad Sci U S A 98:11801–11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8:34

    CAS  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptiles growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Romer C, Wahabzada M, Ballvora A, Pinto F, Rossini M, Panigada C, Behmann J, Leon J, Thurau C, Bauckhage C, Kersting K (2012) Early drought stress detection in cereals: simplex volume maximization for hyperspectral image analysis. Funct Plant Biol 39:878–890

    Article  Google Scholar 

  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  PubMed  Google Scholar 

  • Simko I, Rauscher G, Sideman RG, McCreight JD, Hayes RJ (2014) Evaluation and QTL mapping of resistance to powdery mildew in lettuce. Plant Pathol 63:344–353

    Article  CAS  Google Scholar 

  • Simko I, Jimenez-Berni JA, Sirault XRR (2017) Phenomic approaches and tools for phytopathologists. Phytopathology 107:6–17

    Article  CAS  PubMed  Google Scholar 

  • Sozzani R, Busch W, Spalding EP, Benfey PN (2014) Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci 19:304–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270. https://doi.org/10.1111/j.1365-3040.2011.02336.x

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Brestic M, Zivcak M, Olsovska K, Kovar M, Shao H, He X (2016) Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.08.014 578:90

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:770–783

    Article  CAS  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:1–25

    Article  Google Scholar 

  • Verma AK, Singh D (2016) Abiotic stress and crop improvement: current scenario. Adv Plants Agric Res 4:345–346

    Google Scholar 

  • Weirman A (2010) Plant phenomics teacher resource. http://www.plantphenomics.org.au/files/teacher/FinalPhenomicsforwordwith_image.doc

  • White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT, Hunsaker DJ (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112

    Article  Google Scholar 

  • Windt CW, Vergeldt FJ, De Jager PA, Van AH (2006) MRI of long distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang TT, Zeng SL, Gao Y, Ouyang ZT, Li B, Fang CM, Zhao B (2011) Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol Indic 11:1552–1562

    Article  Google Scholar 

  • Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L (2017) High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173:1554–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO2. Agron J 102:118–123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, M., Mahato, A., Kumar, S., Mishra, V.K. (2020). Phenomics-Assisted Breeding: An Emerging Way for Stress Management. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_18

Download citation

Publish with us

Policies and ethics