Skip to main content

Multilingual Sentiment Analysis

  • Chapter
  • First Online:
Deep Learning-Based Approaches for Sentiment Analysis

Abstract

Sentiment analysis has empowered researchers and analysts to extract opinions of people regarding various products, services, events and other entities. This has been made possible due to an astronomical rise in the amount of text data being made available on the Internet, not only in English but also in many regional languages around the world as well, along with the recent advancements in the field of machine learning and deep learning. It has been observed that deep learning models produce the state-of-the-art prediction results without the need for domain expertise or handcrafted feature engineering, unlike traditional machine learning-based algorithms. In this chapter, we wish to focus on sentiment analysis of various low resource languages having limited sentiment analysis resources such as annotated datasets, word embeddings and sentiment lexicons, along with English. Techniques to refine word embeddings for sentiment analysis and improve word embedding coverage in low resource languages are also covered. Finally, we discuss the major challenges involved in multilingual sentiment analysis and explain novel deep learning-based solutions to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Languages_used_on_the_Internet.

  2. 2.

    https://translate.google.com.

  3. 3.

    http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

References

  1. Pang, B., and L. Lee. 2008. Opinion Mining and Sentiment Analysis. Hanover, MA: Now.

    Google Scholar 

  2. Hussein, D.M.E.-D.M. 2016. A survey on sentiment analysis challenges. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2016.04.002.

    Article  Google Scholar 

  3. Farooq, U., H. Mansoor, A. Nongaillard, Y. Ouzrout, and M.A. Qadir. 2016. Negation handling in sentiment analysis at sentence level. JCP 12: 470–478.

    Google Scholar 

  4. Xiang, B., and L. Zhou 2014. Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training. In ACL.

    Google Scholar 

  5. Ott, M., Y. Choi, C. Cardie, and J. T. Hancock. 2011. Finding deceptive opinion spam by any stretch of the imagination. In ACL.

    Google Scholar 

  6. Li, F., M. Huang, Y. Yang, and X. Zhu. 2011. Learning to identify review spam. In IJCAI.

    Google Scholar 

  7. Flekova, L., D. Preotiuc-Pietro, and E. Ruppert. 2015. Analysing domain suitability of a sentiment lexicon by identifying distributionally bipolar words. In WASSA@EMNLP.

    Google Scholar 

  8. Felbo, B., A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. 2017. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In EMNLP.

    Google Scholar 

  9. Maynard, D., and M.A. Greenwood. 2014. Who cares about sarcastic tweets?. LREC: Investigating the impact of sarcasm on sentiment analysis.

    Google Scholar 

  10. Arora, P. 2013. Sentiment Analysis For Hindi Language (MS thesis, International Institute of Information Technology Hyderabad, 2013). Hyderabad: International Institute of Information Technology Hyderabad.

    Google Scholar 

  11. El-Masri, M., N. Altrabsheh, and H. Mansour. 2017. Successes and challenges of Arabic sentiment analysis research: a literature review. Social Network Analysis and Mining 7: 1–22.

    Article  Google Scholar 

  12. LeCun, Y., Y. Bengio, and G.E. Hinton. 2015. Deep learning. Nature 521: 436–444.

    Article  Google Scholar 

  13. Krizhevsky, A., I. Sutskever, and G.E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Communication of the ACM 60: 84–90.

    Article  Google Scholar 

  14. Graves, A., A. Mohamed, and G.E. Hinton. 2013. Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 6645–6649.

    Google Scholar 

  15. Xu, K., J. Ba, R. Kiros, K. Cho, A.C. Courville, R.R. Salakhutdinov, R.S. Zemel, and Y. Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In ICML.

    Google Scholar 

  16. Bahdanau, D., K. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473.

    Google Scholar 

  17. Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. 2014. Large-scale video classification with convolutional neural networks. In 2014IEEE Conference on Computer Vision and Pattern Recognition, 1725–1732.

    Google Scholar 

  18. Deng, L., and D. Yu. 2014. Deep learning: Methods and applications. Hanover, MA: Now.

    MATH  Google Scholar 

  19. Bakliwal, A. 2013. Fine-Grained Opinion Mining from Different Genre of Social Media Content (MS thesis, International Institute of Information Technology Hyderabad, 2013). Hyderabad: International Institute of Information Technology Hyderabad.

    Google Scholar 

  20. Gonçalves, P., M. Araújo, F. Benevenuto, and M. Cha. 2013. Comparing and combining sentiment analysis methods. In COSN.

    Google Scholar 

  21. Rish, I. 2001. An empirical study of the naive Bayes classifier.

    Google Scholar 

  22. Joachims, T. 1998. Text categorization with support vector machines: Learning with many relevant features. In ECML.

    Chapter  Google Scholar 

  23. Altowayan, A.A., and L. Tao. 2016. Word embeddings for Arabic sentiment analysis. In 2016 IEEE International Conference on Big Data (Big Data), 3820–3825.

    Google Scholar 

  24. Landauer, T.K., P.W. Foltz, and D. Laham. 1998. Introduction to latent semantic analysis. Discourse Processes 25: 259–284.

    Article  Google Scholar 

  25. Mikolov, T., K. Chen, G.S. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.

    Google Scholar 

  26. Mikolov, T., I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. 2013. Distributed representations of words and phrases and their compositionality. In NIPS.

    Google Scholar 

  27. Pennington, J., R. Socher, and C.D. Manning. 2014. Glove: Global vectors for word representation. In EMNLP.

    Google Scholar 

  28. Joulin, A., E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of tricks for efficient text classification. In EACL.

    Google Scholar 

  29. Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov. 2017. Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics 5: 135–146.

    Article  Google Scholar 

  30. Yu, L., J. Wang, K.R. Lai, and X. Zhang. 2017. Refining word embeddings for sentiment analysis. In EMNLP.

    Google Scholar 

  31. Ye, Z., F. Li, and T. Baldwin. 2018. Encoding sentiment information into word vectors for sentiment analysis. In COLING.

    Google Scholar 

  32. Çano, E., and M. Morisio. 2019. Word embeddings for sentiment analysis: A comprehensive empirical survey. CoRR, abs/1902.00753.

    Google Scholar 

  33. Rezaeinia, S.M., A. Ghodsi, and R. Rahmani. 2017. Improving the accuracy of pre-trained word embeddings for sentiment analysis. CoRR, abs/1711.08609.

    Google Scholar 

  34. Yücesoy, V., and A. Koç. 2019. Co-occurrence weight selection in generation of word embeddings for low resource languages. TALLIP.

    Google Scholar 

  35. Akhtar, M.S., P. Sawant, S. Sen, A. Ekbal, and P. Bhattacharyya. 2018. Improving word embedding coverage in less-resourced languages through multi-linguality and cross-linguality: A case study with aspect-based sentiment analysis. ACM Transactions on Asian & Low-Resource Language Information Processing 18: 15:1–15:22.

    Article  Google Scholar 

  36. Barnes, J., R. Klinger, and S.S. Walde. 2018. Bilingual sentiment embeddings: Joint projection of sentiment across languages. In ACL.

    Google Scholar 

  37. Ruder, S., I. Vuli’c, and A. Sogaard. 2017. A survey of cross-lingual word embedding models.

    Google Scholar 

  38. Akhtar, S.S., M. Shrivastava, A. Gupta, and A. Vajpayee. 2018. Robust Representation Learning for Low Resource Languages.

    Google Scholar 

  39. Duong, L., H. Kanayama, T. Ma, S. Bird, and T. Cohn. 2016. Learning crosslingual word embeddings without bilingual corpora. In EMNLP.

    Google Scholar 

  40. Jiang, C., H. Yu, C. Hsieh, and K. Chang. 2018. Learning word embeddings for low-resource languages by PU learning. In NAACL-HLT.

    Google Scholar 

  41. LeCun, Y., L. Bottou, and P. Haffner. 2001. Gradient-based learning applied to document recognition.

    Google Scholar 

  42. Goodfellow, I., Y. Bengio, and A. Courville. 2017. Deep Learning. Cambridge, MA: The MIT Press.

    MATH  Google Scholar 

  43. Santos, C.N., and M.A. Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In COLING.

    Google Scholar 

  44. Zhang, X., J.J. Zhao, and Y. LeCun. 2015. Character-level convolutional networks for text classification. In NIPS.

    Google Scholar 

  45. Kim, Y. 2014. Convolutional neural networks for sentence classification. In EMNLP.

    Google Scholar 

  46. Severyn, A., and A. Moschitti. 2015. Twitter sentiment analysis with deep convolutional neural networks. In SIGIR.

    Google Scholar 

  47. Sahni, T., C. Chandak, N.R. Chedeti, and M. Singh. 2017. Efficient Twitter sentiment classification using subjective distant supervision. In 2017 9th International Conference on Communication Systems and Networks (COMSNETS), 548–553.

    Google Scholar 

  48. Wang, X., W. Jiang, and Z. Luo. 2016. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In COLING.

    Google Scholar 

  49. Ruder, S., P. Ghaffari, and J.G. Breslin. 2016. INSIGHT-1 at SemEval-2016 task 5: Deep learning for multilingual aspect-based sentiment analysis. In SemEval@NAACL-HLT.

    Google Scholar 

  50. Singhal, P., and P. Bhattacharyya. 2016. Borrow a little from your rich cousin: Using embeddings and polarities of english words for multilingual sentiment classification. In COLING.

    Google Scholar 

  51. Araújo, M., J.C. Reis, A.M. Pereira, and F. Benevenuto. 2016. An evaluation of machine translation for multilingual sentence-level sentiment analysis. In SAC.

    Google Scholar 

  52. Bengio, Y., P.Y. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5 (2): 157–66.

    Article  Google Scholar 

  53. Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9: 1735–1780.

    Article  Google Scholar 

  54. Sherstinsky, A. 2018. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. CoRR, abs/1808.03314.

    Google Scholar 

  55. Cho, K., B.V. Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP.

    Google Scholar 

  56. Yao, K. 2015. Depth-gated recurrent neural networks.

    Google Scholar 

  57. Greff, K., R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber. 2017. LSTM: a search space Odyssey. IEEE Transactions on Neural Networks and Learning Systems 28: 2222–2232.

    Article  MathSciNet  Google Scholar 

  58. Wang, Y., M. Huang, X. Zhu, and L. Zhao. 2016. Attention-based LSTM for aspect-level sentiment classification. In EMNLP.

    Google Scholar 

  59. Chen, T., R. Xu, Y. He, and X. Wang. 2017. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications 72: 221–230.

    Article  Google Scholar 

  60. Joshi, A., A. Prabhu, M. Shrivastava, and V. Varma. 2016. Towards sub-word level compositions for sentiment analysis of Hindi-English code mixed text. In COLING.

    Google Scholar 

  61. Jhanwar, M.G., and A. Das. 2018. An ensemble model for sentiment analysis of Hindi-English code-mixed data. CoRR, abs/1806.04450.

    Google Scholar 

  62. Can, E.F., A. Ezen-Can, and F. Can. 2018. Multilingual sentiment analysis: An RNN-based framework for limited data. CoRR, abs/1806.04511.

    Google Scholar 

  63. Alayba, A.M., V. Palade, M. England, and R. Iqbal. 2018. A combined CNN and LSTM model for arabic sentiment analysis. In CD-MAKE.

    Google Scholar 

  64. Baly, R., G.E. Khoury, R. Moukalled, R. Aoun, H.M. Hajj, K.B. Shaban, and W. El-Hajj. 2017. Comparative evaluation of sentiment analysis methods across Arabic dialects. In ACLING.

    Article  Google Scholar 

  65. Peng, H., Y. Ma, Y. Li, and E. Cambria. 2018. Learning multi-grained aspect target sequence for Chinese sentiment analysis. Knowledge-Based Systems 148: 167–176.

    Article  Google Scholar 

  66. Chung, T., B. Xu, Y. Liu, C. Ouyang, S. Li, and L. Luo. 2019. Empirical study on character level neural network classifier for Chinese text. Engineering Applications of Artificial Intelligence 80: 1–7. https://doi.org/10.1016/j.engappai.2019.01.009.

    Article  Google Scholar 

  67. Socher, R., A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, and C. Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP.

    Google Scholar 

  68. Zhang, J., S. Liu, M. Li, M. Zhou, and C. Zong. 2014. Bilingually-constrained phrase embeddings for machine translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). https://doi.org/10.3115/v1/p14-1011

  69. Jain, S., and S. Batra. 2015. Cross lingual sentiment analysis using modified BRAE. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. https://doi.org/10.18653/v1/d15-1016

  70. Al-Sallab, A., R. Baly, H. Hajj, K.B. Shaban, W. El-Hajj, and G. Badaro. 2017. Aroma. ACM Transactions on Asian and Low-Resource Language Information Processing 16 (4): 1–20. https://doi.org/10.1145/3086575.

    Article  Google Scholar 

  71. Alotaiby, F.A., I.A. Alkharashi, and S.G. Foda. (2014). Processing large Arabic text corpora: Preliminary analysis and results. In Language Resources and Evaluation Conference.

    Google Scholar 

  72. Pasha, A., M. Al-Badrashiny, M. Diab, A.E. Kholy, R. Eskander, N. Habash, M. Pooleery, O. Rambow, R.M. Roth. 2014. MADAMIRA: A fast, comprehensive tool for morphological analysis and disambiguation of Arabic. In Language Resources and Evaluation Conference.

    Google Scholar 

  73. Green, S., and C.D. Manning. 2010. Better Arabic parsing: Baselines, evaluations, and analysis. In COLING.

    Google Scholar 

  74. Chomsky, N. 1959. On certain formal properties of grammars. Information and Control 2: 137–167.

    Article  MathSciNet  Google Scholar 

  75. Bromley, J., I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. 1993. Signature verification using a Siamese time delay neural network. IJPRAI 7: 669–688.

    Google Scholar 

  76. Koch, G.R. 2015. Siamese neural networks for one-shot image recognition.

    Google Scholar 

  77. Leal-Taixé, L., C. Canton-Ferrer, and K. Schindler. 2016. Learning by tracking: Siamese CNN for robust target association. In 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 418–425.

    Google Scholar 

  78. Maheshwary, S., and H. Misra. 2018. Matching resumes to jobs via deep siamese network. In WWW.

    Google Scholar 

  79. Schroff, F., D. Kalenichenko, and J. Philbin. 2015. FaceNet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823.

    Google Scholar 

  80. Choudhary, N., R. Singh, I. Bindlish, and M. Shrivastava. 2018. Sentiment analysis of code-mixed languages leveraging resource rich languages. CoRR, abs/1804.00806.

    Google Scholar 

  81. Mathur, P., R. Sawhney, M. Ayyar, and R. Shah. 2018, October. Did you offend me? classification of offensive tweets in hinglish language. In Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), 138–148.

    Google Scholar 

  82. Mathur, P., R. Shah, R. Sawhney, and D. Mahata. 2018, July. Detecting offensive tweets in Hindi-English code-switched language. In Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media, 18–26.

    Google Scholar 

  83. Sawhney, R., P. Manchanda, R. Singh, and S. Aggarwal. 2018, July. A computational approach to feature extraction for identification of suicidal ideation in tweets. In Proceedings of ACL 2018, Student Research Workshop, 91–98.

    Google Scholar 

  84. Sawhney, R., P. Manchanda, P. Mathur, R. Shah, and R. Singh. 2018, October. Exploring and learning suicidal ideation connotations on social media with deep learning. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 167–175.

    Google Scholar 

  85. Mishra, R., P. Sinha, R. Sawhney, D. Mahata, P. Mathur, and R. Shah. 2019, June. SNAP-BATNET: Cascading author profiling and social network graphs for suicide ideation detection on social media. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Ratn Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nankani, H., Dutta, H., Shrivastava, H., Rama Krishna, P.V.N.S., Mahata, D., Shah, R.R. (2020). Multilingual Sentiment Analysis. In: Agarwal, B., Nayak, R., Mittal, N., Patnaik, S. (eds) Deep Learning-Based Approaches for Sentiment Analysis. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-1216-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1216-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1215-5

  • Online ISBN: 978-981-15-1216-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics