Skip to main content

Peroxisome Degradation and Its Molecular Machinery

  • Chapter
  • First Online:
Peroxisomes: Biogenesis, Function, and Role in Human Disease

Abstract

Peroxisomal metabolism and its regulation play important roles in various cellular functions. The regulation of peroxisomal metabolism is controlled by modulation of peroxisome biogenesis as well as the degradation of intra-organellar components and the organelle itself. An accumulation of experimental findings demonstrate that the majority of organelle degradation is accomplished through autophagy, an important cellular process involving transport of cytoplasmic constituents into lysosomes for degradation. The first part of this chapter discusses several processes responsible for the degradation of peroxisomes in mammalian cells, including autophagy. Next, following a general description of the molecular machinery of autophagy, molecular details of selective autophagy of peroxisomes, termed pexophagy, are described based on studies conducted in yeast and mammalian cells. In the final section, expected medical applications associated with pexophagy are described along with potential future developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksam EB et al (2007) A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3:96–105

    Article  CAS  PubMed  Google Scholar 

  • Colakoglu M, Tuncer S, Banerjee S (2018) Emerging cellular functions of the lipid metabolizing enzyme 15-lipoxygenase-1. Cell Prolif 51:e12472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deosaran E et al (2013) NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126:939–952

    Article  CAS  PubMed  Google Scholar 

  • Farre JC et al (2008) PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farre JC et al (2013) Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep 14:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada T et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  CAS  PubMed  Google Scholar 

  • Hara-Kuge S, Fujiki Y (2008) The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Exp Cell Res 314:3531–3541

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts SJ et al (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10:1722–1733

    Article  CAS  PubMed  Google Scholar 

  • Ichimura Y et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  CAS  PubMed  Google Scholar 

  • Iijima K et al (2008) Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res 49:451–464

    Article  CAS  PubMed  Google Scholar 

  • Imai K et al (2016) Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J Cell Sci 129:3781

    Article  CAS  PubMed  Google Scholar 

  • Iwata J et al (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281:4035–4041

    Article  CAS  PubMed  Google Scholar 

  • Jiang L et al (2015) Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes Cells 20:36–49

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keith B, Johnson RS, Simon MC (2011) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kihara A et al (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi M et al (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279:421–428

    Article  CAS  PubMed  Google Scholar 

  • Kim PK et al (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105:20567–20574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkin V et al (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  • Lamark T et al (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581

    Article  CAS  PubMed  Google Scholar 

  • Law KB et al (2017) The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy 13:868–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JN et al (2018) Catalase inhibition induces pexophagy through ROS accumulation. Biochem Biophys Res Commun 501:696–702

    Article  CAS  PubMed  Google Scholar 

  • Luiken JJ et al (1992) Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 304:93–97

    Article  CAS  PubMed  Google Scholar 

  • Marcassa E et al (2018) Dual role of USP30 in controlling basal pexophagy and mitophagy. EMBO Rep 19:e45595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398

    Article  CAS  PubMed  Google Scholar 

  • Motley AM, Nuttall JM, Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31:2852–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukaiyama H et al (2002) Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7:75–90

    Article  CAS  PubMed  Google Scholar 

  • Mukaiyama H et al (2004) Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 15:58–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazarko TY et al (2014) Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 204:541–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Nordgren M et al (2015) Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11:1326–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuttall JM, Motley AM, Hettema EH (2014) Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy 10:835–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obara K et al (2008) The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283:23972–23980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papinski D, Kraft C (2016) Regulation of autophagy by signaling through the Atg1/ULK1 complex. J Mol Biol 428:1725–1741

    Article  CAS  PubMed  Google Scholar 

  • Pomatto LC, Raynes R, Davies KJ (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 92:739–753

    Article  PubMed  Google Scholar 

  • Reddy JK et al (1982) Hepatic and renal effects of peroxisome proliferators: biological implications. Ann N Y Acad Sci 386:81–110

    Article  CAS  PubMed  Google Scholar 

  • Riccio V et al (2019) Deubiquitinating enzyme USP30 maintains basal peroxisome abundance by regulating pexophagy. J Cell Biol 218:798–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent G et al (2016) PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J Cell Biol 214:677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schittek B, Sinnberg T (2014) Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 13:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seglen PO, Gordon PB (1982) 3-methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79:1889–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintani T et al (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18:5234–5241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H et al (2017) Structural biology of the core autophagy machinery. Curr Opin Struct Biol 43:10–17

    Article  CAS  PubMed  Google Scholar 

  • Tanaka C et al (2014) Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J Cell Biol 207:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titorenko VI et al (1995) Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J Bacteriol 177:357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  • Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108:25–35

    CAS  PubMed  Google Scholar 

  • van Leyen K et al (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395:392–395

    Article  PubMed  Google Scholar 

  • Veenhuis M et al (1983) Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol 134:193–203

    Article  CAS  PubMed  Google Scholar 

  • Walter KM et al (2014) Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 20:882–897

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H et al (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita S et al (2014) The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 10:1549–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota S (1993) Formation of autophagosomes during degradation of excess peroxisomes induced by administration of dioctyl phthalate. Eur J Cell Biol 61:67–80

    CAS  PubMed  Google Scholar 

  • Yokota S, Dariush Fahimi H (2009) Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochem Cell Biol 131:455–458

    Article  CAS  PubMed  Google Scholar 

  • Yokota S et al (1993) Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)phthalate treatment. II. Immunocytochemical analysis of early and late autophagosomes. Eur J Cell Biol 62:372–383

    CAS  PubMed  Google Scholar 

  • Yokota S, Oda T, Fahimi HD (2001) The role of 15-lipoxygenase in disruption of the peroxisomal membrane and in programmed degradation of peroxisomes in normal rat liver. J Histochem Cytochem 49:613–622

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Haraguchi CM, Oda T (2008) Induction of peroxisomal Lon protease in rat liver after di-(2-ethylhexyl)phthalate treatment. Histochem Cell Biol 129:73–83

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17:1259–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zientara-Rytter K et al (2018) Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy 14:368–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyoshi Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oku, M., Sakai, Y. (2019). Peroxisome Degradation and Its Molecular Machinery. In: Imanaka, T., Shimozawa, N. (eds) Peroxisomes: Biogenesis, Function, and Role in Human Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-1169-1_3

Download citation

Publish with us

Policies and ethics