Skip to main content

Kidney Development and Injury: A Road to Regeneration

  • Chapter
  • First Online:
Acute Kidney Injury and Regenerative Medicine

Abstract

Proximal tubular epithelial cells (PTECs) are the major cellular targets of acute kidney injury (AKI). PTECs, as well as epithelial cells in glomeruli and distal tubules, are derived from nephron progenitors that exist in the embryonic kidney. However, nephron progenitors disappear around birth by terminal differentiation, meaning that mechanisms of repair following AKI will be different from those during development. Although some developmental genes are re-expressed in experimental AKI models, most PTECs are replaced by surviving mature epithelial cells and the functions of genes in these cells can differ from their developmental functions. Recent progresses in stem cell biology have enabled in vitro generation of kidney organoids from human-induced pluripotent stem cells (iPSCs), and the PTECs in the organoids exhibit some functional features. However, kidney organoids are immature and selective PTEC induction has not been established. In this chapter, we discuss the recent findings regarding AKI from the viewpoint of developmental nephrology and the hurdles to overcome in the treatment of AKI and eventual kidney failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishinakamura R. Stem cells in the embryonic kidney. Kidney Int. 2008;73:913–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development. 2006;133:151–61.

    Article  CAS  PubMed  Google Scholar 

  4. Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R. Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell Rep. 2016;15:801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18:698–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindström NO, Lawrence ML, Burn SF, Johansson JA, Bakker ER, Ridgway RA, Chang C-H, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. Elife. 2015;4:1–29.

    Article  CAS  Google Scholar 

  7. Brunskill EW, Park J-S, Chung E, Chen F, Magella B, Potter SS. Single cell dissection of early kidney development: multilineage priming. Development. 2014;141:3093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindström NO, De Sena Brandine G, Tran T, Ransick A, Suh G, Guo J, Kim AD, Parvez RK, Ruffins SW, Rutledge EA, Thornton ME, Grubbs B, McMahon JA, Smith AD, McMahon AP. Progressive recruitment of mesenchymal progenitors reveals a time-dependent process of cell fate acquisition in mouse and human nephrogenesis. Dev Cell. 2018;45:651–660.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Cheng H-T, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, McMahon AP, Kopan R. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134:801–11.

    Article  CAS  PubMed  Google Scholar 

  10. Fujimura S, Jiang Q, Kobayashi C, Nishinakamura R. Notch2 activation in the embryonic kidney depletes nephron progenitors. J Am Soc Nephrol. 2010;21:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marable S, Chung E, Shin J, Park J-S, Deacon P. Notch signaling promotes nephrogenesis by downregulating Six2. Development. 2016;143:3907–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chung E, Deacon P, Park J-S. Notch is required for the formation of all nephron segments and primes nephron progenitors for differentiation. Development. 2017;144:4530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyryläinen R, Shan J, Vainio S, Umbhauer M, Cereghini S. HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development. 2013;140:873–85.

    Article  CAS  PubMed  Google Scholar 

  14. Massa F, Garbay S, Bouvier R, Sugitani Y, Noda T, Gubler M-C, Heidet L, Pontoglio M, Fischer E. Hepatocyte nuclear factor 1β controls nephron tubular development. Development. 2013;140:886–96.

    Article  CAS  PubMed  Google Scholar 

  15. Marable SS, Potter SS, Park J-S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight. 2018;3:e97497.

    Google Scholar 

  16. Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4 and 1 regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol. 2013;84:808–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG. Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol. 2007;18:2486–96.

    Article  PubMed  Google Scholar 

  18. Duffield JS, Park KM, Hsiao L, Kelley VR, Scadden DT, Ichimura T, Bonventre JV. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest. 2005;115:1743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell. 2008;2:284–91.

    Article  CAS  PubMed  Google Scholar 

  20. Kusaba T, Lalli M, Kramann R, Kobayashi A, Humphreys BD. Differentiated kidney epithelial cells repair injured proximal tubule. Proc Natl Acad Sci U S A. 2014;111:1527–32.

    Article  CAS  PubMed  Google Scholar 

  21. Berger K, Bangen J-M, Hammerich L, Liedtke C, Floege J, Smeets B, Moeller MJ. Origin of regenerating tubular cells after acute kidney injury. Proc Natl Acad Sci U S A. 2014;111:1533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Itäranta P, Tuukkanen J, Vainio S, Peltoketo H, Seppänen T, Chi L, Niku M. Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Dev Biol. 2006;293:473–83.

    Article  PubMed  CAS  Google Scholar 

  23. Terada Y, Tanaka H, Okado T, Shimamura H, Inoshita S, Kuwahara M, Sasaki S. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J Am Soc Nephrol. 2003;14:1223–33.

    Article  CAS  PubMed  Google Scholar 

  24. DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol. 2013;24:1399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou D, Fu H, Xiao L, Mo H, Zhuo H, Tian X, Lin L, Xing J, Liu Y. Fibroblast-specific β-catenin signaling dictates the outcome of AKI. J Am Soc Nephrol. 2018;29:1257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi T, Terada Y, Kuwana H, Tanaka H, Okado T, Kuwahara M, Tohda S, Sakano S, Sasaki S. Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury. Kidney Int. 2008;73:1240–50.

    Article  CAS  PubMed  Google Scholar 

  27. Sörensen-Zender I, Rong S, Susnik N, Zender S, Pennekamp P, Melk A, Haller H, Schmitt R. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am J Physiol Renal Physiol. 2014;306:F907–15.

    Article  PubMed  CAS  Google Scholar 

  28. Kavvadas P, Keuylian Z, Prakoura N, Placier S, Dorison A, Chadjichristos CE, Dussaule J-C, Chatziantoniou C. Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury. Kidney Int. 2018;94:126–38.

    Article  CAS  PubMed  Google Scholar 

  29. Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL. Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol. 2014;29:531–6.

    Article  PubMed  Google Scholar 

  30. Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9:964–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012;18:396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vigolo E, Markó L, Hinze C, Müller DN, Schmidt-Ullrich R, Schmidt-Ott KM. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int. 2019;95:108–22.

    Article  CAS  PubMed  Google Scholar 

  33. Himmelfarb J, Chertow GM, McCullough PA, Mesana T, Shaw AD, Sundt TM, Brown C, Cortville D, Dagenais F, de Varennes B, Fontes M, Rossert J, Tardif J-C. Perioperative THR-184 and AKI after cardiac surgery. J Am Soc Nephrol. 2018;29:670–9.

    Article  CAS  PubMed  Google Scholar 

  34. Reginensi A, Clarkson M, Neirijnck Y, Lu B, Ohyama T, Groves AK, Sock E, Wegner M, Costantini F, Chaboissier MC, Schedl A. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum Mol Genet. 2011;20:1143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar S, Liu J, Pang P, Krautzberger AM, Reginensi A, Akiyama H, Schedl A, Humphreys BD, McMahon AP. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12:1325–38.

    Article  CAS  PubMed  Google Scholar 

  36. Kang HM, Huang S, Reidy K, Han SH, Chinga F, Susztak K. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep. 2016;14:861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller A-L, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS. Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol. 2016;18:1269–80.

    Article  CAS  PubMed  Google Scholar 

  38. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.

    Article  CAS  PubMed  Google Scholar 

  39. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.

    Article  CAS  PubMed  Google Scholar 

  40. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33:1193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J Am Soc Nephrol. 2016;27:1778–91.

    Article  CAS  PubMed  Google Scholar 

  42. van den Berg CW, Ritsma L, Avramut MC, Wiersma LE, Leuning G, Lievers E, Koning M, Van Den Berg BM, Vanslambrouck JM, Koster AJ, Howden SE, Takasato M, Little MH. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports. 2018;10:751–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bantounas I, Ranjzad P, Tengku F, Silajdžić E, Forster D, Asselin M-C, Lewis P, Lennon R, Plagge A, Wang Q, Woolf AS, Kimber SJ. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Reports. 2018;10:766–79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Toyohara T, Mae S, Sueta S, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahshi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K. Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice. Stem Cells Transl Med. 2015;4:980–92.

    Google Scholar 

  45. Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017;21:730–46.

    Article  CAS  PubMed  Google Scholar 

  46. Yoshimura Y, Taguchi A, Tanigawa S, Yatsuda J, Kamba T, Takahashi S, Kurihara H, Mukoyama M, Nishinakamura R. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J Am Soc Nephrol. 2019;30:304–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the Nishinakamura laboratory, especially Dr. Atsuhiro Taguchi, for their contributions to establish protocols for kidney organoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Nishinakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De, S., Nishinakamura, R. (2020). Kidney Development and Injury: A Road to Regeneration. In: Terada, Y., Wada, T., Doi, K. (eds) Acute Kidney Injury and Regenerative Medicine . Springer, Singapore. https://doi.org/10.1007/978-981-15-1108-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1108-0_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1107-3

  • Online ISBN: 978-981-15-1108-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics