Skip to main content

AKI-to-CKD Transition

  • Chapter
  • First Online:
Acute Kidney Injury and Regenerative Medicine
  • 698 Accesses

Abstract

Previously conceived to be a benign syndrome, AKI has now proven to be one important cause of CKD. So far, eight kinds of rodent models have been introduced to the basic research model for the AKI-to-CKD transition. Among these, the unilateral ischemia-reperfusion injury (uIRI) and repeated low-dose cisplatin (RLDC) models were proposed as consistent rodent models for the AKI-to-CKD transition. However, these two rodent models demonstrate divergent data on kidney injury, and an easy and accurate way of monitoring renal function will be needed. In the proposed mechanism, renal hypoxia plays a pivotal role in the AKI-to-CKD transition with capillary rarefaction, abnormally differentiated tubular cells, epigenetic changes in fibroblasts, and persisting inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basile DP, Donohoe D, Roethe K, Osborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 2001;281(5):F887–99.

    Article  CAS  PubMed  Google Scholar 

  2. Basile DP. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens. 2004;13(1):1–7.

    Article  PubMed  Google Scholar 

  3. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53(6):961–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Article  PubMed  Google Scholar 

  5. See EJ, Jayasinghe K, Glassford N, Bailey M, Johnson DW, Polkinghorne KR, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019;95(1):160–72.

    Article  PubMed  Google Scholar 

  6. Fu Y, Tang C, Cai J, Chen G, Zhang D, Dong Z. Rodent models of AKI-CKD transition. Am J Physiol Renal Physiol. 2018;315(4):F1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horbelt M, Lee SY, Mang HE, Knipe NL, Sado Y, Kribben A, et al. Acute and chronic microvascular alterations in a mouse model of ischemic acute kidney injury. Am J Physiol Renal Physiol. 2007;293(3):F688–95.

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–43, 1p following 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, et al. Sustained activation of Wnt/beta-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol. 2016;27(6):1727–40.

    Article  CAS  PubMed  Google Scholar 

  10. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol. 2012;303(11):F1487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marschner JA, Schafer H, Holderied A, Anders HJ. Optimizing mouse surgery with online rectal temperature monitoring and preoperative heat supply. Effects on post-ischemic acute kidney injury. PLoS One. 2016;11(2):e0149489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zager RA, Johnson AC, Becker K. Acute unilateral ischemic renal injury induces progressive renal inflammation, lipid accumulation, histone modification, and “end-stage” kidney disease. Am J Physiol Renal Physiol. 2011;301(6):F1334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lech M, Rommele C, Grobmayr R, Eka Susanti H, Kulkarni OP, Wang S, et al. Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury. Kidney Int. 2013;83(4):647–61.

    Article  CAS  PubMed  Google Scholar 

  14. Danelli L, Madjene LC, Madera-Salcedo I, Gautier G, Pacreau E, Ben Mkaddem S, et al. Early phase mast cell activation determines the chronic outcome of renal ischemia-reperfusion injury. J Immunol. 2017;198(6):2374–82.

    Article  CAS  PubMed  Google Scholar 

  15. Finn WF, Fernandez-Repollet E, Goldfarb D, Iaina A, Eliahou HE. Attenuation of injury due to unilateral renal ischemia: delayed effects of contralateral nephrectomy. J Lab Clin Med. 1984;103(2):193–203.

    CAS  PubMed  Google Scholar 

  16. Skrypnyk NI, Voziyan P, Yang H, de Caestecker CR, Theberge MC, Drouin M, et al. Pyridoxamine reduces postinjury fibrosis and improves functional recovery after acute kidney injury. Am J Physiol Renal Physiol. 2016;311(2):F268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 2012;82(2):172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p. 38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem. 2001;276(15):11870–6.

    Article  CAS  PubMed  Google Scholar 

  19. Sharp CN, Doll MA, Dupre TV, Shah PP, Subathra M, Siow D, et al. Repeated administration of low-dose cisplatin in mice induces fibrosis. Am J Physiol Renal Physiol. 2016;310(6):F560–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharp CN, Doll MA, Megyesi J, Oropilla GB, Beverly LJ, Siskind LJ. Subclinical kidney injury induced by repeated cisplatin administration results in progressive chronic kidney disease. Am J Physiol Renal Physiol. 2018;315(1):F161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torres R, Velazquez H, Chang JJ, Levene MJ, Moeckel G, Desir GV, et al. Three-dimensional morphology by multiphoton microscopy with clearing in a model of cisplatin-induced CKD. J Am Soc Nephrol. 2016;27(4):1102–12.

    Article  CAS  PubMed  Google Scholar 

  22. Ravichandran K, Wang Q, Ozkok A, Jani A, Li H, He Z, et al. CD4 T cell knockout does not protect against kidney injury and worsens cancer. J Mol Med (Berl). 2016;94(4):443–55.

    Article  CAS  Google Scholar 

  23. Katagiri D, Hamasaki Y, Doi K, Negishi K, Sugaya T, Nangaku M, et al. Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int. 2016;89(2):374–85.

    Article  CAS  PubMed  Google Scholar 

  24. Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, et al. Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol. 2016;27(8):2393–406.

    Article  PubMed  Google Scholar 

  25. Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 2008;74(2):158–69.

    Article  CAS  PubMed  Google Scholar 

  26. Depierreux M, Van Damme B, Vanden Houte K, Vanherweghem JL. Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs. Am J Kidney Dis. 1994;24(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  27. Fan Y, Xiao W, Lee K, Salem F, Wen J, He L, et al. Inhibition of reticulon-1A-mediated endoplasmic reticulum stress in early AKI attenuates renal fibrosis development. J Am Soc Nephrol. 2017;28(7):2007–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang C, Shao Q, Jin B, Gong R, Zhang M, Xu B. Tanshinone IIA attenuates renal fibrosis after acute kidney injury in a mouse model through inhibition of fibrocytes recruitment. Biomed Res Int. 2015;2015:867140.

    PubMed  PubMed Central  Google Scholar 

  29. Stallons LJ, Whitaker RM, Schnellmann RG. Suppressed mitochondrial biogenesis in folic acid-induced acute kidney injury and early fibrosis. Toxicol Lett. 2014;224(3):326–32.

    Article  CAS  PubMed  Google Scholar 

  30. Roberts J, Chen B, Curtis LM, Agarwal A, Sanders PW, Zinn KR. Detection of early changes in renal function using 99mTc-MAG3 imaging in a murine model of ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2007;293(4):F1408–12.

    Article  CAS  PubMed  Google Scholar 

  31. Schock-Kusch D, Xie Q, Shulhevich Y, Hesser J, Stsepankou D, Sadick M, et al. Transcutaneous assessment of renal function in conscious rats with a device for measuring FITC-sinistrin disappearance curves. Kidney Int. 2011;79(11):1254–8.

    Article  CAS  PubMed  Google Scholar 

  32. Rabito CA, Moore RH, Bougas C, Dragotakes SC. Noninvasive, real-time monitoring of renal function: the ambulatory renal monitor. J Nucl Med. 1993;34(2):199–207.

    CAS  PubMed  Google Scholar 

  33. Chinen LK, Galen KP, Kuan KT, Dyszlewski ME, Ozaki H, Sawai H, et al. Fluorescence-enhanced europium-diethylenetriaminepentaacetic (DTPA)-monoamide complexes for the assessment of renal function. J Med Chem. 2008;51(4):957–62.

    Article  CAS  PubMed  Google Scholar 

  34. Dorshow RB, Bugaj JE, Burleigh BD, Duncan JR, Johnson MA, Jones WB. Noninvasive fluorescence detection of hepatic and renal function. J Biomed Opt. 1998;3(3):340–5.

    Article  CAS  PubMed  Google Scholar 

  35. Rabito CA, Chen Y, Schomacker KT, Modell MD. Optical, real-time monitoring of the glomerular filtration rate. Appl Opt. 2005;44(28):5956–65.

    Article  CAS  PubMed  Google Scholar 

  36. Schock-Kusch D, Sadick M, Henninger N, Kraenzlin B, Claus G, Kloetzer HM, et al. Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. Nephrol Dial Transplant. 2009;24(10):2997–3001.

    Article  CAS  PubMed  Google Scholar 

  37. Yu W, Sandoval RM, Molitoris BA. Rapid determination of renal filtration function using an optical ratiometric imaging approach. Am J Physiol Renal Physiol. 2007;292(6):F1873–80.

    Article  CAS  PubMed  Google Scholar 

  38. Wang E, Sandoval RM, Campos SB, Molitoris BA. Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat. Am J Physiol Renal Physiol. 2010;299(5):F1048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boss A, Martirosian P, Gehrmann M, Artunc F, Risler T, Oesingmann N, et al. Quantitative assessment of glomerular filtration rate with MR gadolinium slope clearance measurements: a phase I trial. Radiology. 2007;242(3):783–90.

    Article  PubMed  Google Scholar 

  40. Black LM, Lever JM, Traylor AM, Chen B, Yang Z, Esman SK, et al. Divergent effects of AKI to CKD models on inflammation and fibrosis. Am J Physiol Renal Physiol. 2018;315(4):F1107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015;26(8):1765–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chou YH, Huang TM, Chu TS. Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J Formos Med Assoc. 2017;116(9):652–9.

    Article  CAS  PubMed  Google Scholar 

  43. Strausser SA, Nakano D, Souma T. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response. Curr Opin Nephrol Hypertens. 2018;27(4):314–22.

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka S, Tanaka T, Nangaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol. 2014;307(11):F1187–95.

    Article  CAS  PubMed  Google Scholar 

  45. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med. 1995;332(10):647–55.

    Article  CAS  PubMed  Google Scholar 

  46. Haase VH. Mechanisms of hypoxia responses in renal tissue. J Am Soc Nephrol. 2013;24(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  47. Whitehouse T, Stotz M, Taylor V, Stidwill R, Singer M. Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion. Am J Physiol Renal Physiol. 2006;291(3):F647–53.

    Article  CAS  PubMed  Google Scholar 

  48. Safran M, Kim WY, O’Connell F, Flippin L, Gunzler V, Horner JW, et al. Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A. 2006;103(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  49. Levy MN, Sauceda G. Diffusion of oxygen from arterial to venous segments of renal capillaries. Am J Phys. 1959;196(6):1336–9.

    Article  CAS  Google Scholar 

  50. Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, et al. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol. 2014;307(10):F1111–22.

    Article  CAS  PubMed  Google Scholar 

  51. Schurek HJ, Jost U, Baumgartl H, Bertram H, Heckmann U. Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex. Am J Phys. 1990;259(6 Pt 2):F910–5.

    CAS  Google Scholar 

  52. Welch WJ, Baumgartl H, Lubbers D, Wilcox CS. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int. 2001;59(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  53. Conger JD, Robinette JB, Hammond WS. Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 1991;39(6):1087–97.

    Article  CAS  PubMed  Google Scholar 

  54. Chen X, Wang CC, Song SM, Wei SY, Li JS, Zhao SL, et al. The administration of erythropoietin attenuates kidney injury induced by ischemia/reperfusion with increased activation of Wnt/beta-catenin signaling. J Formos Med Assoc. 2015;114(5):430–7.

    Article  CAS  PubMed  Google Scholar 

  55. Schrimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens. 2011;20(3):297–305.

    Article  PubMed  Google Scholar 

  56. Lee SY, Horbelt M, Mang HE, Knipe NL, Bacallao RL, Sado Y, et al. MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury. Am J Physiol Renal Physiol. 2011;301(1):F101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin SL, Chang FC, Schrimpf C, Chen YT, Wu CF, Wu VC, et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am J Pathol. 2011;178(2):911–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang FC, Chou YH, Chen YT, Lin SL. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc. 2012;111(11):589–98.

    Article  CAS  PubMed  Google Scholar 

  59. Kramann R, Wongboonsin J, Chang-Panesso M, Machado FG, Humphreys BD. Gli1(+) pericyte loss induces capillary rarefaction and proximal tubular injury. J Am Soc Nephrol. 2017;28(3):776–84.

    Article  CAS  PubMed  Google Scholar 

  60. Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol. 2012;23(5):868–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol. 2004;15(7):1794–804.

    Article  PubMed  Google Scholar 

  63. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. 2004;14(6):1035–41.

    PubMed  Google Scholar 

  64. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108(22):9226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Endo T, Nakamura J, Sato Y, Asada M, Yamada R, Takase M, et al. Exploring the origin and limitations of kidney regeneration. J Pathol. 2015;236(2):251–63.

    Article  PubMed  Google Scholar 

  66. Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, et al. PTEN loss defines a TGF-beta-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol. 2012;302(9):F1210–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, et al. Inhibition of autoregulated TGFbeta signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am J Pathol. 2009;174(4):1291–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, et al. Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Galphaq-mediated rho and alphavbeta6 integrin-dependent activation of TGF-beta. Am J Pathol. 2012;181(4):1236–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu CF, Chiang WC, Lai CF, Chang FC, Chen YT, Chou YH, et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am J Pathol. 2013;182(1):118–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16(5):544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang YT, Yang CC, Pan SY, Chou YH, Chang FC, Lai CF, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126(2):721–31.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ko GJ, Grigoryev DN, Linfert D, Jang HR, Watkins T, Cheadle C, et al. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol. 2010;298(6):F1472–83.

    Article  CAS  PubMed  Google Scholar 

  73. Cheng SY, Chou YH, Liao FL, Lin CC, Chang FC, Liu CH, et al. Losartan reduces ensuing chronic kidney disease and mortality after acute kidney injury. Sci Rep. 2016;6:34265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Newsome BB, Warnock DG, McClellan WM, Herzog CA, Kiefe CI, Eggers PW, et al. Long-term risk of mortality and end-stage renal disease among the elderly after small increases in serum creatinine level during hospitalization for acute myocardial infarction. Arch Intern Med. 2008;168(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  75. Sato Y, Mii A, Hamazaki Y, Fujita H, Nakata H, Masuda K, et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight. 2016;1(11):e87680.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ya Kaimori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaimori, JY. (2020). AKI-to-CKD Transition. In: Terada, Y., Wada, T., Doi, K. (eds) Acute Kidney Injury and Regenerative Medicine . Springer, Singapore. https://doi.org/10.1007/978-981-15-1108-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1108-0_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1107-3

  • Online ISBN: 978-981-15-1108-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics