Skip to main content

Review of Decision Tree-Based Binary Classification Framework Using Robust 3D Image and Feature Selection for Malaria-Infected Erythrocyte Detection

  • Conference paper
  • First Online:
Data Engineering and Communication Technology

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1079))

Abstract

We start with a famous proverb ‘health is wealth.’ Malaria is one of the most rapidly spreading and contagious diseases, mostly spread through microbes. Efficient treatment of the disease requires early and accurate estimation to ensure control from spreading and treatment in early phases. Accordingly, several studies have been put forward during the past decade. Analyzing the blood smear’s images is one of the prominent works proposed in this context. This manuscript attempts to automate the process of diagnosis through machine learning techniques. The algorithm trains the model through different selected features of the input images and thereby uses the learning experience to classify the blood smears as disease prone or healthy. The cuckoo search algorithm is used for designing a heuristic scale, which is further assessed through multiple experiments to evaluate its accuracy. Different performance evaluation measures like precision, sensitivity, specificity, and accuracy are used to assess the robustness of the model toward early identification of malaria in the premature stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rougemont, M., et al.: Detection of four plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J. Clin. Microbiol. 5636–5643 (2004)

    Google Scholar 

  2. Florens, L., et al.: A proteomic view of the plasmodium falciparum life cycle. Nature 419(6906), 520–526 (2002)

    Article  Google Scholar 

  3. Pain, A., et al.: The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 455(7214), 799–803 (2008)

    Article  Google Scholar 

  4. Snow, R.W., et al.: The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434, 214–217 (2005)

    Google Scholar 

  5. World Health Organization: Guidelines for the treatment of malaria, World Health Organization, pp. 9–12. Switzerland, Geneva (2010)

    Google Scholar 

  6. Reyburn, H.”: New WHO guidelines for the treatment of malaria. c2637 (2010)

    Google Scholar 

  7. Hu, Ming-Kuei: Visual pattern recognition by moment invariants. Info. Theory IRE Trans. 8(2), 179–187 (1962)

    Article  Google Scholar 

  8. Galloway, M.M.: Texture classification using gray level run length. Comput. Graph. Image Process 4(2), 172–179 (1975)

    Article  Google Scholar 

  9. Mandelbrot, B.B.: The fractal geometry of nature/Revised and enlarged edition, 495 p. WH Freeman and Co., New York (1983)

    Google Scholar 

  10. Chu, A., Sehgal, C.M., Greenleaf, J.F.: Use of gray value distribution of run lengths for texture analysis. Pattern Recogn. Lett. 11(6), 415–419 (1990)

    Article  Google Scholar 

  11. Dasarathy, Belur V., Holder, Edwin B.: Image characterizations based on joint gray level-run length distributions. Pattern Recogn. Lett. 12(8), 497–502 (1991)

    Article  Google Scholar 

  12. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybernetics 24(1), 115–120 (1994)

    Google Scholar 

  13. Ojala, Timo, Pietikaeinen, Matti, Maeenpaeae, Topi: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  14. Gonzalez, R.C., Richard E.W.: Processing (2002)

    Google Scholar 

  15. Pharwaha, A.P.S., Singh, B.: Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2 (2009)

    Google Scholar 

  16. Ghosh, M., Das, D., Chakraborty, C.: Entropy based divergence for leukocyte image segmentation. In: 2010 International Conference on Systems in Medicine and Biology

    Google Scholar 

  17. Krishnan, M., Muthu, R., et al.: Textural characterization of histopathological images for oral sub-mucous fibrosis detection. Tissue Cell 5.43, 318–330 (2011)

    Google Scholar 

  18. Krishnan, M., Muthu, R., et al.: Statistical analysis of textural features for improved classification of oral histopathological images. J. Med. Syst. 2.36, 865–881 (2012)

    Google Scholar 

  19. Celebi, M.E., et al.: An improved objective evaluation measure for border detection in dermoscopy images. Skin Res. Technol. Offic. J. Int. Soc. Bioeng. Skin (ISBS); Int. Soc. Digital Imaging Skin (ISDIS); Int. Soc. Skin Imaging (ISSI) 15.4, 444 (2009)

    Google Scholar 

  20. Yang, X.-S.: Trumpinton Street, and Suash Deb. Cuckoo Search via Lévy Flights. arXiv preprint arXiv:1003.1594 (2010)

  21. Ross, N.E., et al.: Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44.5, 427–436 (2006)

    Google Scholar 

  22. Kaewkamnerd, S., et al.: An automatic device for detection and classification of malaria parasite species in thick blood film. BMC Bioinform. 13, Supple 17 (2012)

    Google Scholar 

  23. Díaz, G., González, F.A., Romero, E.: A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J. Biomed. Inform. 42(2), 296–307 (2009)

    Article  Google Scholar 

  24. Lai, C.H., et al.: A protozoan parasite extraction scheme for digital microscopic images. Comput. Med. Imaging Graphics Official J. Comput. Med. Imaging Soc. 34(2), 122 (2010)

    Article  Google Scholar 

  25. Le, M.T.: A novel semi-automatic image processing approach to determine Plasmodium falciparum parasitemia in giemsa-stained thin blood smears. BMC Cell Biol. 9(1), 15 (2008)

    Article  Google Scholar 

  26. Díaz, G., Gonzalez, F., Romero, E.: Infected cell identification in thin blood images based on color pixel classification: comparison and analysis. In: Proceedings of the Congress on pattern recognition 12th Iberoamerican conference on Progress in pattern recognition, image analysis and applications. Springer-Verlag (2007)

    Google Scholar 

  27. Tek, F.B., Dempster, A.G., Kale, I.: Computer vision for microscopy diagnosis of malaria. Malaria J. 8, 153–153 (2009)

    Google Scholar 

  28. Tek, F.B., Dempster, A.G., Kale, I.: Parasite detection and identification for automated thin blood film malaria diagnosis. Comput. Vision Image Underst. 1.114, 21–32 (2010)

    Google Scholar 

  29. Memeu, D.M., et al.: Detection of Plasmodium Parasites from Images of Thin Blood Smears (2013)

    Google Scholar 

  30. Yunda, L., Alarcón, A., Millán, J.: Automated image analysis method for p-vivax malaria parasite detection in thick film blood images. Sistemas Telemática 10(20), 9–25 (2012)

    Article  Google Scholar 

  31. Sio, S.W., et al.: MalariaCount: an image analysis-based program for the accurate determination of parasitemia. J. Microbiol. Methods 68(1), 11–18 (2007)

    Article  Google Scholar 

  32. Tek, F.B., Andrew, G.D., Izzet, K.: Malaria parasite detection in peripheral blood images. In: Proceedings of British Machine Vision Conference (2006)

    Google Scholar 

  33. Makkapati, V.V., Rao, R.M.: Segmentation of malaria parasites in peripheral blood smear images. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing

    Google Scholar 

  34. Purwar, Y., et al.: Automated and unsupervised detection of malarial parasites in microscopic images. Malaria J. 10 (2011)

    Google Scholar 

  35. Somasekar, J., Eswara Reddy, B.: Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging. Comput. Electr. Eng. 45.C, 336–351 (2015)

    Google Scholar 

  36. Das, D.K., et al.: Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45, 97–106 (2013). (Oxford, England: 1993)

    Google Scholar 

  37. Khan, M.I., et al.: Content based image retrieval approaches for detection of malarial parasite in blood images. Int. J. Biometr. Bioinform. (IJBB) 5.2, 97 (2011)

    Google Scholar 

  38. Hearst, M.A., et al.: Support vector machines. IEEE Intell. Syst. Appl. 13.4, 18–28 (1998)

    Google Scholar 

  39. Langley, P., Sage, S.: Induction of selective bayesian classifiers. Conf. Uncertainty Artificial Intel (1994)

    Google Scholar 

  40. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Ally and Bacon Pearson Education, Boston (2001)

    Google Scholar 

  41. Iwaki, Y.:. U.S Patent No. 8,861,878 (2014)

    Google Scholar 

  42. Kanan, C., Cottrell, G.W.: Color-to-grayscale: does the method matter in image recognition. PLoS ONE 7(1), e29740 (2012)

    Article  Google Scholar 

  43. Kovačević, J., Chebira, A.: An introduction to frames. Found. Trends Signal Process. 2(1), 1–94 (2008)

    Article  Google Scholar 

  44. Abdul-Nasir, A.S., Mashor, M.Y., Mohamed, Z.: Colour image segmentation approach for detection of malaria parasites. WSEAS Trans. Biol. Biomed. 10, 41–55 (2013)

    Google Scholar 

  45. Yeon, J., et al.: Effective Grayscale Conversion Method for Malaria Parasite Detection. (2014)

    Google Scholar 

  46. Kim, J.-D., et al.: Comparison of grayscale conversion methods for malaria classification. Int. J. Bio-Sci. Bio-Technol. 7.1, 141–150 (2015)

    Google Scholar 

  47. Lai, C.H., et al.: A protozoan parasite extraction scheme for digital microscopic images. Computer. Med. Imaging Graphics Official J. Comput. Med. Imaging Soc. 34(2), 122 (2010)

    Article  Google Scholar 

  48. Chokkalingam, S.P., Komathy, K., Sowmya, M.: Performance Analysis of Various Lymphocytes Images De-Noising Filters over a Microscopic Blood Smear Image.

    Google Scholar 

  49. Wei, Z., et al.: Median-Gaussian filtering framework for Moiré pattern noise removal from X-ray microscopy image. Micron (2012)

    Google Scholar 

  50. Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering, vol. 8. CRC press (1997)

    Google Scholar 

  51. MathWorks. (2011) medfilt2. Retrieved from mathworks.com: http://www.mathworks.com/help/toolbox/images/ref/me dfilt2.html

  52. Aizenberg, I., Bregin, T., Paliy, D.: New method for impulsive noise filtering using its preliminary detection. In: SPIE Proceedings, vol. 4667 (2002)

    Google Scholar 

  53. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using MATLAB. Pearson Education India (2004)

    Google Scholar 

  54. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  Google Scholar 

  55. Christ, M.J., Parvathi, R.M.S.: Segmentation of medical image using K-Means clustering and marker controlled watershed algorithm. European J. Sci. Res. 71.2, 190–194 (2012)

    Google Scholar 

  56. Das, D., et al.: Invariant moment based feature analysis for abnormal erythrocyte recognition. In: 2010 International Conference on Systems in Medicine and Biology

    Google Scholar 

  57. Sadiq Jaffer M.D., Balaram, V.V.S.S.S.: OFS-Z: Optimal Features Selection by Z-Score for Malaria Infected Erythrocyte Detection using Supervised Learning. In: Proceedings of the First International Conference on Computational Intelligence and Informatics. Springer Singapore (2018)

    Google Scholar 

  58. http://fimm.webmicroscope.net/Research/Momic/mamic

  59. http://www.biosigdata.com/?download=malaria-image

  60. Altman, D.G., et al.: Statistical guidelines for contributors to medical journals. British Med. J. (Clin. Res. ed.) 287(6385), 132–132 (1983)

    Article  Google Scholar 

  61. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nature Methods 9.7 676–682 (2012)

    Google Scholar 

  62. Jagtap, C.D., Usha Rani, N.: Heuristic scale to estimate premature malaria parasites: scope in microscopic blood smear images. Indian J. Sci. Technol 10.8 (2017)

    Google Scholar 

  63. Sadiq, M.J., Balaram, V.V.S.S.S.: DTBC: decision tree based binary classification using with feature selection and optimization for malaria infected erythrocyte detection. Int. J. Appl. Eng. Res. 12(24), 15923–15934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Azar Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azar Ali, S., Phani Kumar, S. (2020). Review of Decision Tree-Based Binary Classification Framework Using Robust 3D Image and Feature Selection for Malaria-Infected Erythrocyte Detection. In: Raju, K.S., Senkerik, R., Lanka, S.P., Rajagopal, V. (eds) Data Engineering and Communication Technology. Advances in Intelligent Systems and Computing, vol 1079. Springer, Singapore. https://doi.org/10.1007/978-981-15-1097-7_64

Download citation

Publish with us

Policies and ethics