Skip to main content

Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs

  • Chapter
  • First Online:
Cullin-RING Ligases and Protein Neddylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Cullin-RING ligases (CRLs), the largest family of E3 ubiquitin ligases, have become an attractive target for drug discovery, primarily due to their ability to regulate the degradation of numerous functionally and structurally diverse proteins, thereby controlling a myriad of biological processes. As the abnormal expressions of CRLs and their substrate proteins are associated with human diseases, elucidating their roles in these physiological and pathological processes will facilitate CRL-targeting drug development for the treatment of these diseases. Notably, these studies are also providing new concepts for the design of potential small-molecule therapeutics targeting CRLs and for the use of CRLs to degrade “undruggable” proteins. In this chapter, we systematically review the development of small molecules that target CRLs and especially emphasize the applications of CRLs in a chemical chimera for protein degradation, termed proteolysis-targeting chimeras (PROTACs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A3G:

APOBEC3G

AD:

Alzheimer’s disease

AML:

Acute myeloid leukemia

AR:

Androgen receptor

BTK:

Bruton’s tyrosine kinase

BTZ:

Bortezomib

CAND1:

Cullin-associated and neddylation-dissociated-1

CDK9:

Cyclin-dependent kinase 9

COI1:

Coronatine-insensitive protein 1

CRBN:

Cereblon

CRL:

Cullin-RING ligase

CRPC:

Castration-resistant prostate cancer

DHT:

Dihydrotestosterone

E2:

Ubiquitin-conjugating enzyme

E3:

Ubiquitin ligase

ER:

Estrogen receptor

ERRα:

Estrogen-related receptor alpha

GCN5:

General control nonderepressible 5

HBV:

Hepatitis B virus

HBX:

X protein of HBV

HDAC:

Histone deacetylase

HIF1α:

Hypoxia-inducible factor 1α

KEAP1:

Kelch-like ECH-associated protein 1

NAE:

NEDD8 activating enzyme

NEDD8:

Neural precursor cell expressed, developmentally downregulated 8

NHL:

Non-Hodgkin’s lymphoma

PCAF:

P300/CBP-associated factor

POI:

Protein of interest

PPI:

Protein-protein interaction

PROTAC:

Proteolysis-targeting chimeric molecule

SAR:

Structure-activity relationship

SCF:

Skp1-CUL1-F-box

SMER:

Small-molecule enhancer of rapamycin

Ub:

Ubiquitin

UPS:

Ubiquitin proteasome system

VHL:

von Hippel-Lindau protein

References

  • Abruzzese MP, Bilotta MT, Fionda C, Zingoni A, Soriani A, Vulpis E, Borrelli C, Zitti B, Petrucci MT, Ricciardi MR, Molfetta R, Paolini R, Santoni A, Cippitelli M (2016) Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. J Hematol Oncol 9:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adjei AA (2006) What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J Clin Oncol Off J Am Soc Clin Oncol 24:4054–4055

    Article  CAS  Google Scholar 

  • Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, Damoiseaux R, Hao R, Del Moral PM, Verma R, Li Y, Li C, Houk KN, Jung ME, Zheng N, Huang L, Deshaies RJ, Kaiser P, Huang J (2010) Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol 28:738–742

    Article  CAS  PubMed  Google Scholar 

  • Aoki M, Fujishita T (2017) Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol 407:153–189

    PubMed  Google Scholar 

  • Balamurugan K (2016) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 138:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Bassi ZI, Fillmore MC, Miah AH, Chapman TD, Maller C, Roberts EJ, Davis LC, Lewis DE, Galwey NW, Waddington KE, Parravicini V, Macmillan-Jones AL, Gongora C, Humphreys PG, Churcher I, Prinjha RK, Tough DF (2018) Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem Biol 13:2862–2867

    Article  CAS  PubMed  Google Scholar 

  • Batchu SN, Brijmohan AS, Advani A (2016) The therapeutic hope for HDAC6 inhibitors in malignancy and chronic disease. Clin Sci 130:987–1003

    Article  CAS  Google Scholar 

  • Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, Saki N (2015) Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 72:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Bondeson DP, Crews CM (2017) Targeted protein degradation by small molecules. Annu Rev Pharmacol Toxicol 57:107–123

    CAS  PubMed  Google Scholar 

  • Bondeson DP, Mares A, Smith IE, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM (2015) Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 11:611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, Ma J, Loke HK, Lingaraj T, Wu D, Hamman KB, Spelman JJ, Cullis CA, Langston SP, Vyskocil S, Sells TB, Mallender WD, Visiers I, Li P, Claiborne CF, Rolfe M, Bolen JB, Dick LR (2010) Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37:102–111

    Article  CAS  PubMed  Google Scholar 

  • Buckley DL, Gustafson JL, Van Molle I, Roth AG, Tae HS, Gareiss PC, Jorgensen WL, Ciulli A, Crews CM (2012a) Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew Chem Int Ed Engl 51:11463–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley DL, Van Molle I, Gareiss PC, Tae HS, Michel J, Noblin DJ, Jorgensen WL, Ciulli A, Crews CM (2012b) Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J Am Chem Soc 134:4465–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, Lehman AM, Woyach JA, Johnson AJ, Byrd JC, Crews CM (2018) Targeting the C481S Ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57:3564–3575

    Article  CAS  PubMed  Google Scholar 

  • Bulatov E, Ciulli A (2015) Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 467:365–386

    Article  CAS  PubMed  Google Scholar 

  • Cardote TAF, Ciulli A (2017) Structure-guided design of peptides as tools to probe the protein-protein interaction between Cullin-2 and Elongin BC substrate adaptor in Cullin RING E3 ubiquitin ligases. ChemMedChem 12:1491–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardote TAF, Gadd MS, Ciulli A (2017) Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 25:901–911 e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, Rychak E, Corral LG, Ren YJ, Wang M, Riley M, Delker SL, Ito T, Ando H, Mori T, Hirano Y, Handa H, Hakoshima T, Daniel TO, Cathers BE (2014) Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21:803–809

    Article  CAS  PubMed  Google Scholar 

  • Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154:556–568

    Article  CAS  PubMed  Google Scholar 

  • Chan CH, Morrow JK, Zhang S, Lin HK (2014) Skp2: a dream target in the coming age of cancer therapy. Cell Cycle 13:679–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Xie W, Kuhn DJ, Voorhees PM, Lopez-Girona A, Mendy D, Corral LG, Krenitsky VP, Xu W, Moutouh-de Parseval L, Webb DR, Mercurio F, Nakayama KI, Nakayama K, Orlowski RZ (2008) Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111:4690–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BB, Coon TA, Glasser JR, McVerry BJ, Zhao J, Zhao Y, Zou C, Ellis B, Sciurba FC, Zhang Y, Mallampalli RK (2013) A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation. Nat Immunol 14:470–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu TT, Gao N, Li QQ, Chen PG, Yang XF, Chen YX, Zhao YF, Li YM (2016) Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem Biol 23:453–461

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693

    Article  CAS  PubMed  Google Scholar 

  • Conde J, Artzi N (2015) Are RNAi and miRNA therapeutics truly dead? Trends Biotechnol 33:141–144

    Article  CAS  PubMed  Google Scholar 

  • Corneth OBJ, Klein Wolterink RGJ, Hendriks RW (2016) BTK Signaling in B cell differentiation and autoimmunity. Curr Top Microbiol Immunol 393:67–105

    CAS  PubMed  Google Scholar 

  • Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, Serebrenik YV, Hamman BD, Morgan A, Ferraro C, Siu K, Neklesa TK, Winkler JD, Coleman KG, Crews CM (2017) Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J Med Chem 61(2):583–598

    Article  PubMed  CAS  Google Scholar 

  • Cui D, Xiong X, Zhao Y (2016) Cullin-RING ligases in regulation of autophagy. Cell Div 11:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, Chu XJ, Bartkovitz D, Podlaski F, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B (2013) Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 56:5979–5983

    Article  CAS  PubMed  Google Scholar 

  • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer ES, Scrima A, Bohm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thoma NH (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith RE, Harper JW, Jenkins JL, Thoma NH (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana RJ (2014) Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 146:914–928

    Article  CAS  PubMed  Google Scholar 

  • Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM, Ellis L, Epemolu O, Shimamura S, Bantscheff M, Grandi P, Read KD, Cantrell DA, Rocha S, Ciulli A (2016) Potent and selective chemical probe of hypoxic signalling downstream of HIF-alpha hydroxylation via VHL inhibition. Nat Commun 7:13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I, Birced I, Hewitt S, Dias DM, Ciulli A (2014) Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J Med Chem 57:8657–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, Winter GE, Erb MA, Scott TG, Xu M, Seo HS, Dhe-Paganon S, Kwiatkowski NP, Perry JA, Qi J, Gray NS, Bradner JE (2018) Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol 14:405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes P, Fleming Outeiro T, Cavadas C (2015) Emerging role of Sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci 36:756–768

    Article  CAS  PubMed  Google Scholar 

  • Gorelik M, Orlicky S, Sartori MA, Tang X, Marcon E, Kurinov I, Greenblatt JF, Tyers M, Moffat J, Sicheri F, Sidhu SS (2016) Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1-F-box interface. Proc Natl Acad Sci U S A 113:3527–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gressel S, Schwalb B, Decker TM, Qin W, Leonhardt H, Eick D, Cramer P (2017) CDK9-dependent RNA polymerase II pausing controls transcription initiation. elife 6:e29736

    Article  PubMed  PubMed Central  Google Scholar 

  • Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A 98:5043–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505:229–233

    Article  CAS  PubMed  Google Scholar 

  • Gustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL, Tae HS, Sundberg TB, Stagg DB, Hines J, McDonnell DP, Norris JD, Crews CM (2015) Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew Chem Int Ed Engl 54:9659–9662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase VH (2010) Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol 299:F1–F13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Z, Huang S (2015) E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci 20:474–490

    Article  CAS  Google Scholar 

  • Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, Jha SS, McGragor D, Banerjee SK (2015) CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 34:3152–3163

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A 105:5632–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning RK, Varghese JO, Das S, Nag A, Tang G, Tang K, Sutherland AM, Heath JR (2016) Degradation of Akt using protein-catalyzed capture agents. J Pept Sci 22:196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, Schafers S, Bell E, Nortmeyer M, Westermann F, De Preter K, Florin A, Heukamp L, Spruessel A, Astrahanseff K, Lindner S, Sadowski N, Schramm A, Astorgues-Xerri L, Riveiro ME, Eggert A, Cvitkovic E, Schulte JH (2016) Targeting MYCN-driven transcription by BET-Bromodomain inhibition. Clin Cancer Res 22:2470–2481

    Article  CAS  PubMed  Google Scholar 

  • Hines J, Gough JD, Corson TW, Crews CM (2013) Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc Natl Acad Sci U S A 110:8942–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR (2016) Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 12:672–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417:975–978

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Magesh S, Chen L, Wang L, Lewis TA, Chen Y, Khodier C, Inoyama D, Beamer LJ, Emge TJ, Shen J, Kerrigan JE, Kong AN, Dandapani S, Palmer M, Schreiber SL, Munoz B (2013) Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction. Bioorg Med Chem Lett 23:3039–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ceccarelli DF, Orlicky S, St-Cyr DJ, Ziemba A, Garg P, Plamondon S, Auer M, Sidhu S, Marinier A, Kleiger G, Tyers M, Sicheri F (2014) E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat Chem Biol 10:156–163

    Article  CAS  PubMed  Google Scholar 

  • Humphries F, Yang S, Wang B, Moynagh PN (2015) RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 22:225–236

    Article  CAS  PubMed  Google Scholar 

  • Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254:14–24

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science (New York, NY) 327:1345–1350

    Article  CAS  Google Scholar 

  • Jia L, Soengas MS, Sun Y (2009) ROC1/RBX1 E3 ubiquitin ligase silencing suppresses tumor cell growth via sequential induction of G2-M arrest, apoptosis, and senescence. Cancer Res 69:4974–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing H, Hu J, He B, Negron Abril YL, Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T, Giannakakou P, Weiss RS, Lin H (2016) A SIRT2-selective inhibitor promotes c-Myc Oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell 29:297–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jnoff E, Albrecht C, Barker JJ, Barker O, Beaumont E, Bromidge S, Brookfield F, Brooks M, Bubert C, Ceska T, Corden V, Dawson G, Duclos S, Fryatt T, Genicot C, Jigorel E, Kwong J, Maghames R, Mushi I, Pike R, Sands ZA, Smith MA, Stimson CC, Courade JP (2014) Binding mode and structure-activity relationships around direct inhibitors of the Nrf2-Keap1 complex. ChemMedChem 9:699–705

    Article  CAS  PubMed  Google Scholar 

  • Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science (New York, NY) 343:301–305

    Article  CAS  Google Scholar 

  • Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S, Ko E, Hines J, Crews CM (2016) Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl 55:807–810

    Article  CAS  PubMed  Google Scholar 

  • Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed Engl 41:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, Xu J, Zhao L, Thomas D, Beer DG, Sun Y (2014) Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Investig 124:835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Gao C, Zhao L, Yuan Z, Chen Y, Jiang Y (2018) Phthalimide conjugations for the degradation of oncogenic PI3K. Eur J Med Chem 151:237–247

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Furukawa M, Matsumoto T, Xiong Y (2002) NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 10:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Gao Y, Ye H, Gerrin S, Ma F, Wu Y, Zhang T, Russo J, Cai C, Yuan X, Liu J, Chen S, Balk SP (2017) Positive feedback loop mediated by protein phosphatase 1alpha mobilization of P-TEFb and basal CDK1 drives androgen receptor in prostate cancer. Nucleic Acids Res 45:3738–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, Karasawa S, Carmel G, Jackson P, Abbasian M, Mahmoudi A, Cathers B, Rychak E, Gaidarova S, Chen R, Schafer PH, Handa H, Daniel TO, Evans JF, Chopra R (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong K-K, Bradner JE, Kaelin WG (2014) The myeloma drug Lenalidomide promotes the Cereblon-dependent destruction of Ikaros proteins. Science 343:305–309

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM (2015) Hijacking the E3 ubiquitin ligase Cereblon to efficiently target BRD4. Chem Biol 22:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malek E, Abdel-Malek MA, Jagannathan S, Vad N, Karns R, Jegga AG, Broyl A, van Duin M, Sonneveld P, Cottini F, Anderson KC, Driscoll JJ (2017) Pharmacogenomics and chemical library screens reveal a novel SCF(SKP2) inhibitor that overcomes Bortezomib resistance in multiple myeloma. Leukemia 31:645–653

    Article  CAS  PubMed  Google Scholar 

  • Mallampalli RK, Coon TA, Glasser JR, Wang C, Dunn SR, Weathington NM, Zhao J, Zou C, Zhao Y, Chen BB (2013) Targeting F box protein Fbxo3 to control cytokine-driven inflammation. J Immunol 191:5247–5255

    Article  CAS  PubMed  Google Scholar 

  • Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Gluck N, Chen B, Starokadomskyy P, Li H, Maine GN, Burstein E (2011) COMMD1 (copper metabolism MURR1 domain-containing protein 1) regulates Cullin RING ligases by preventing CAND1 (Cullin-associated Nedd8-dissociated protein 1) binding. J Biol Chem 286:32355–32365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcotte D, Zeng W, Hus JC, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, Wang D, Atmanene C, Roecklin D, Vecchi M, Vivat V, Kraemer J, Winkler D, Hong V, Chao J, Lukashev M, Silvian L (2013) Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem 21:4011–4019

    Article  CAS  PubMed  Google Scholar 

  • Masoud GN, Li W (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui M, Shindo K, Izumi T, Io K, Shinohara M, Komano J, Kobayashi M, Kadowaki N, Harris RS, Takaori-Kondo A (2014) Small molecules that inhibit Vif-induced degradation of APOBEC3G. Virol J 11:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milhollen MA, Thomas MP, Narayanan U, Traore T, Riceberg J, Amidon BS, Bence NF, Bolen JB, Brownell J, Dick LR, Loke HK, McDonald AA, Ma J, Manfredi MG, Sells TB, Sintchak MD, Yang X, Xu Q, Koenig EM, Gavin JM, Smith PG (2012) Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21:388–401

    Article  CAS  PubMed  Google Scholar 

  • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP (2002) Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science (New York, NY) 296:1886–1889

    Article  CAS  Google Scholar 

  • Montrose K, Krissansen GW (2014) Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem Biophys Res Commun 453:735–740

    Article  CAS  PubMed  Google Scholar 

  • Mullard A (2019) First targeted protein degrader hits the clinic. Nat Rev Drug Discov

    Google Scholar 

  • Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Fujiwara H, Furuichi Y, Tanaka K, Shimbara N (2008) A novel small-molecule inhibitor of NF-kappaB signaling. Biochem Biophys Res Commun 368:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki ST, Griffin P, Kelly KR, Carew JS (2012) MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 21:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HC, Yang H, Fribourgh JL, Wolfe LS, Xiong Y (2015) Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure 23:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson CM, Jiang B, Erb MA, Liang Y, Doctor ZM, Zhang Z, Zhang T, Kwiatkowski N, Boukhali M, Green JL, Haas W, Nomanbhoy T, Fischer ES, Young RA, Bradner JE, Winter GE, Gray NS (2018) Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 14:163–170

    Article  CAS  PubMed  Google Scholar 

  • Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, Sicheri F, Tyers M (2010) An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol 28:733–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KS, Yang H, Choi J, Seo S, Kim D, Lee CH, Jeon H, Kim SW, Lee DH (2017) The HSP90 inhibitor, NVP-AUY922, attenuates intrinsic PI3K inhibitor resistance in KRAS-mutant non-small cell lung cancer. Cancer Lett 406:47–53

    Article  CAS  PubMed  Google Scholar 

  • Pavlides SC, Huang KT, Reid DA, Wu L, Blank SV, Mittal K, Guo L, Rothenberg E, Rueda B, Cardozo T, Gold LI (2013) Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: therapeutic potential for endometrial cancer. Endocrinology 154:4030–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20

    Article  CAS  PubMed  Google Scholar 

  • Petzold G, Fischer ES, Thoma NH (2016) Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532:127–130

    Article  CAS  PubMed  Google Scholar 

  • Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, Brzovic PS, Klevit RE (2012) Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol Cell 47:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Xu C, Chen J, Li Q, Jiang H (2019) Downregulation of the transcriptional co-activator PCAF inhibits the proliferation and migration of vascular smooth muscle cells and attenuates NF-kappaB-mediated inflammatory responses. Biochem Biophys Res Commun 513:41–48

    Article  CAS  PubMed  Google Scholar 

  • Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AM, Wang J, Chen X, Dong H, Siu K, Winkler JD, Crew AP, Crews CM, Coleman KG (2016) PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A 113:7124–7129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitsma JM, Liu X, Reichermeier KM, Moradian A, Sweredoski MJ, Hess S, Deshaies RJ (2017) Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171:1326–1339.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, Seo HS, Dastjerdi S, Wuhr M, Dhe-Paganon S, Armstrong SA, Bradner JE (2017) Degradation of the BAF complex factor BRD9 by Heterobifunctional ligands. Angew Chem Int Ed Engl 56:5738–5743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Hofmeister CC, Raje NS, Siegel DS, Lonial S, Laubach J, Efebera YA, Vesole DH, Nooka AK, Rosenblatt J, Doss D, Zaki MH, Bensmaine A, Herring J, Li Y, Watkins L, Chen MS, Anderson KC (2017) Pomalidomide, bortezomib and low-dose dexamethasone in lenalidomide-refractory and proteasome inhibitor-exposed myeloma. Leukemia 31:2695–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico-Bautista E, Yang CC, Lu L, Roth GP, Wolf DA (2010) Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells. BMC Biol 8:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, Zahid M, Murry DJ, Natarajan A, Rana S (2017) Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 53:7577–7580

    Article  CAS  Google Scholar 

  • Rodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews CM, Deshaies RJ, Sakamoto KM (2008) Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27:7201–7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A, Deshaies RJ (2008) Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 32:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98:8554–8559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto KM, Kim KB, Verma R, Ransick A, Stein B, Crews CM, Deshaies RJ (2003) Development of protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics 2:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, Dong H, Jin M, McDonnell DP, Crew AP, Neklesa TK, Crews CM (2018) Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol 1:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandoval D, Hill S, Ziemba A, Lewis S, Kuhlman B, Kleiger G (2015) Ubiquitin-conjugating enzyme Cdc34 and ubiquitin ligase Skp1-cullin-F-box ligase (SCF) interact through multiple conformations. J Biol Chem 290:1106–1118

    Article  CAS  PubMed  Google Scholar 

  • Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheepstra M, Hekking KFW, van Hijfte L, Folmer RHA (2019) Bivalent ligands for protein degradation in drug discovery. Comput Struct Biotechnol J 17:160–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, Olah J, Ovadi J, Sippl W, Jung M (2018) Chemically induced degradation of Sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on Sirtuin rearranging ligands (SirReals). J Med Chem 61:482–491

    Article  CAS  PubMed  Google Scholar 

  • Schneekloth JS Jr, Fonseca FN, Koldobskiy M, Mandal A, Deshaies R, Sakamoto K, Crews CM (2004) Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 126:3748–3754

    Article  CAS  PubMed  Google Scholar 

  • Schneekloth AR, Pucheault M, Tae HS, Crews CM (2008) Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett 18:5904–5908

    Article  CAS  PubMed  Google Scholar 

  • Scudellari M (2019) Protein-slaying drugs could be the next blockbuster therapies. Nature 567:298–300

    Article  CAS  PubMed  Google Scholar 

  • Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC, Lyapina S, Chi Y, Galova M, Claypool J, Sandmeyer S, Nasmyth K, Deshaies RJ, Shevchenko A, Deshaies RJ (1999) Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev 13:1614–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafique S, Ali W, Kanwal S, Rashid S (2018) Structural basis for Cullins and RING component inhibition: targeting E3 ubiquitin pathway conductors for cancer therapeutics. Int J Biol Macromol 106:532–543

    Article  CAS  PubMed  Google Scholar 

  • Shah JJ, Jakubowiak AJ, O’Connor OA, Orlowski RZ, Harvey RD, Smith MR, Lebovic D, Diefenbach C, Kelly K, Hua Z, Berger AJ, Mulligan G, Faessel HM, Tirrell S, Dezube BJ, Lonial S (2016) Phase I study of the novel investigational NEDD8-activating enzyme inhibitor Pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res 22:34–43

    Article  CAS  PubMed  Google Scholar 

  • Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736

    Article  CAS  PubMed  Google Scholar 

  • Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82:8656–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhao X, Ding N, Gao H, Wu Y, Yang Y, Zhao M, Hwang J, Song Y, Liu W, Rao Y (2018a) PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res 28:779–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Fiskus W, Qian Y, Rajapakshe K, Raina K, Coleman KG, Crew AP, Shen A, Saenz DT, Mill CP, Nowak AJ, Jain N, Zhang L, Wang M, Khoury JD, Coarfa C, Crews CM, Bhalla KN (2018b) BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells. Leukemia 32:343–352

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Yamamoto M (2017) The KEAP1-NRF2 system in cancer. Front Oncol 7:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Tokatlian T, Segura T (2010) siRNA applications in nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tron AE, Arai T, Duda DM, Kuwabara H, Olszewski JL, Fujiwara Y, Bahamon BN, Signoretti S, Schulman BA, DeCaprio JA (2012) The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. Mol Cell 46:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A (2012) Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface. Chem Biol 19:1300–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science (New York, NY) 303:844–848

    Article  CAS  Google Scholar 

  • Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu JJ, Zhao C, Glenn K, Wen Y, Tovar C, Packman K, Vassilev L, Graves B (2013) Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4:466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cuddy M, Samuel T, Welsh K, Schimmer A, Hanaii F, Houghten R, Pinilla C, Reed JC (2004) Cellular, biochemical, and genetic analysis of mechanism of small molecule IAP inhibitors. J Biol Chem 279:48168–48176

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14:233–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Maitra A, Wang H (2016) The emerging roles of F-box proteins in pancreatic tumorigenesis. Semin Cancer Biol 36:88–94

    Article  PubMed  CAS  Google Scholar 

  • Wang ST, Ho HJ, Lin JT, Shieh JJ, Wu CY (2017) Simvastatin-induced cell cycle arrest through inhibition of STAT3/SKP2 axis and activation of AMPK to promote p27 and p21 accumulation in hepatocellular carcinoma cells. Cell Death Dis 8:e2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science (New York, NY) 348:1376–1381

    Article  CAS  Google Scholar 

  • Wood K, Hensing T, Malik R, Salgia R (2016) Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA Oncol 2:805–812

    Article  PubMed  Google Scholar 

  • Wu L, Grigoryan Arsen V, Li Y, Hao B, Pagano M, Cardozo Timothy J (2012) Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol 19:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu C, Tsui ST, Liu D (2016) Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 9:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu J, Li L, Yu G, Ying W, Gao Q, Zhang W, Li X, Ding C, Jiang Y, Wei D, Duan S, Lei Q, Li P, Shi T, Qian X, Qin J, Jia L (2015) The neddylation-cullin 2-RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer. Mol Cell Proteomics 14:499–509

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Song Y, Xie H, Wu H, Wu YT, Leisten ED, Tang W (2018) Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg Med Chem Lett 28:2493–2497

    Article  CAS  PubMed  Google Scholar 

  • Yasuda D, Nakajima M, Yuasa A, Obata R, Takahashi K, Ohe T, Ichimura Y, Komatsu M, Yamamoto M, Imamura R, Kojima H, Okabe T, Nagano T, Mashino T (2016) Synthesis of Keap1-phosphorylated p62 and Keap1-Nrf2 protein-protein interaction inhibitors and their inhibitory activity. Bioorg Med Chem Lett 26:5956–5959

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengerle M, Chan KH, Ciulli A (2015) Selective small molecule induced degradation of the BET Bromodomain protein BRD4. ACS Chem Biol 10:1770–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Sun Y (2013) Cullin-RING ligases as attractive anti-cancer targets. Curr Pharm Des 19:3215–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Morgan MA, Sun Y (2014) Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 21:2383–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1-Rbx1-Skp1-F box Skp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Evans SL, Han X, Liu Y, Yu XF (2012) Characterization of the interaction of full-length HIV-1 Vif protein with its key regulator CBFbeta and CRL5 E3 ubiquitin ligase components. PLoS One 7:e33495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhang W, Sun Y, Jia L (2018) Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 44:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, Zhu H, Farley KA, Ding W, Schiemer J, Feng X, Chang JS, Uccello DP, Young JA, Garcia-Irrizary CN, Czabaniuk L, Schuff B, Oliver R, Montgomery J, Hayward MM, Coe J, Chen J, Niosi M, Luthra S, Shah JC, El-Kattan A, Qiu X, West GM, Noe MC, Shanmugasundaram V, Gilbert AM, Brown MF, Calabrese MF (2018) Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 115:E7285–e7292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2016YFA0501800 to Y.Z. and X.X.), the National Natural Science Foundation of China (81672728, 81972591, and 81721091 to Y.Z. and 81572708 and 81974429 to X.X.), and the Natural Science Foundation of Zhejiang Province (LR16C050001 to Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiufang Xiong or Yongchao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gong, L., Cui, D., Xiong, X., Zhao, Y. (2020). Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_19

Download citation

Publish with us

Policies and ethics