Skip to main content

DVCC Based Oscillator and Bandpass Filter with Grounded Passive Components

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1053))

  • 1178 Accesses

Abstract

This paper presents a sinusoidal oscillator and a bandpass filter based on differential voltage current conveyors (DVCCs). The proposed oscillator is composed of two DVCCs and five grounded passive components, viz. three resistors and two capacitors. The tuning of oscillation frequency and oscillation condition can be independently achieved through grounded resistors. The bandpass circuit is obtained from the proposed oscillator circuit topology by breaking feedback path between input and output terminals. The Q factor and center frequency of proposed bandpass filter are orthogonally tunable. Proposed circuits are simulated using PSPICE software and have shown good correspondence between simulation and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez, G.: Foundations of oscillator circuit design. Artech House Publishers (2007)

    Google Scholar 

  2. Singh, V.K., Sharma, R.K., Singh, A.K., Bhaskar, D.R., Senani, R.: Two new canonic single-CFOA oscillators with single resistor controls. IEEE Trans. Circuits Syst. II Express Briefs. 52, 860–864 (2005)

    Google Scholar 

  3. Biolek, D., Keskin, A.U., Biolkova, V.: Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits Devices Syst. 4, 496–502 (2010)

    Article  Google Scholar 

  4. Lahiri, A., Jaikla, W., Siripruchyanun, M.: Explicit-current-output second-order sinusoidal oscillators using two CFOAs and grounded capacitors. AEU—Int. J. Electron. Commun. 65, 669–672 (2011)

    Article  Google Scholar 

  5. Lahiri, A., Jaikla, W., Siripruchyanun, M.: Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr. Circuits Signal Process. 65, 321–325 (2010)

    Article  Google Scholar 

  6. Jin, J., Wang, C.: Single CDTA-based current-mode quadrature oscillator. AEU—Int. J. Electron. Commun. 66, 933–936 (2012)

    Article  Google Scholar 

  7. Smith, K.C., Sedra, A.: The current conveyor—a new circuit building block. Proc. IEEE 56, 1368–1369 (1968)

    Article  Google Scholar 

  8. Sedra, A., Smith, K.: A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17, 132–134 (1970)

    Article  Google Scholar 

  9. Toumazou, C., Lidegy, F.J., Haigh, D.: Analog IC Design: The Current-Mode Approach. Peter Peregrinus Press, U.K. (1990)

    Google Scholar 

  10. Ferri, G., Stornelli, V., Celeste, A.: Integrated rail-to-rail low-voltage low-power enhanced DC-gain fully differential operational transconductance amplifier. ETRI J. 29, 785–793 (2007)

    Article  Google Scholar 

  11. Hwang, Y.-S., Tu, S.-H., Liu, W.-H., Chen, J.-J.: New building block: multiplication-mode current conveyor. IET Circuits Devices Syst. 3, 41–48 (2009)

    Article  Google Scholar 

  12. Samiotis, P., Psychalinos, C.: Design of filters with only grounded passive elements using differential voltage current feedback operational amplifiers. J. Circuits Syst. Comput. 19, 573–580 (2010)

    Google Scholar 

  13. Prommee, P., Somdunyakanok, M.: CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU—Int. J. Electron. Commun. 65, 1–8 (2011)

    Article  Google Scholar 

  14. Kacar, F., Yesil, A., Noori, A.: New CMOS realization of voltage differencing buffered amplifier and its biquad filter applications. Radioengineering 21, 333–339 (2012)

    Google Scholar 

  15. Ayten, U.E., Sagbas, M., Herencsar, N., Koton, J.: Novel floating general element simulators using CBTA. Radioengineering 21, 11–19 (2012)

    Google Scholar 

  16. Yenkar, R.V, Pande, R.S., Limaye, S.S.: Double current controlled differential voltage dual output current conveyor and its applications. In: 2015 International Conference on Communication, Information and Computing Technology (ICCICT), pp. 1–6 (2015). IEEE

    Google Scholar 

  17. Pandey, R., Nand, D., Pandey, N.: Generalised operational floating current conveyor based instrumentation amplifier. IET Circuits Devices Syst. 10, 209–219 (2016)

    Article  Google Scholar 

  18. Singh, A.K., Kumar, P., Senani, R.: New grounded immittance simulators employing a single CFCC. J. Eng. 2017, 435–447 (2017)

    Google Scholar 

  19. Pal, K.: Modified current conveyors and their applications. Microelectronics J. 20, 37–40 (1989)

    Article  Google Scholar 

  20. Elwan, H.O., Soliman, A.M.: Novel CMOS differential voltage current conveyor and its applications. IEE Proc.—Circuits Devices Syst. 144, 195–200 (1997)

    Google Scholar 

  21. Hu, J., Xu, T., Zhang, W., Xia, Y.: A CMOS rail-to-rail differential voltage current conveyor and its applications. In: Proceedings 2005 International Conference on Communications, Circuits and Systems, pp. 1079–1083 (2005). IEEE

    Google Scholar 

  22. Soliman, A.M.: Low voltage wide range CMOS differential voltage current conveyor and its applications. Contemp. Eng. Sci. 1, 105–126 (2008)

    Google Scholar 

  23. Khateb, F., Khatib, N., Koton, J.: Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectronics J. 42, 1010–1017 (2011)

    Article  Google Scholar 

  24. Chen, H.-P., Shen, S.S.: A versatile universal capacitor-grounded voltage-mode filter using DVCCs. ETRI J. 29, 470–476 (2007)

    Article  Google Scholar 

  25. Khan, I.A., Beg, P.: Fully differential sinusoidal quadrature oscillator using CMOS DVCC. In: International Conference on Communication, Computer, and Power, pp. 196–198 (2009)

    Google Scholar 

  26. Chien, H.-C., Lo, Y.-K.: Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectronics J. 42, 1107–1115 (2011)

    Article  Google Scholar 

  27. Chien, H.-C.: Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectronics J. 43, 962–974 (2012)

    Article  Google Scholar 

  28. Gupta, S.S., Senani, R.: Grounded-capacitor current-mode SRCO: novel application of DVCCC. Electron. Lett. 36, 195–196 (2000)

    Article  Google Scholar 

  29. Hou, C.L., Chen, Y.T., Huang, C.C.: The oscillator using a single DVCC. Tamkang J. Sci. Eng. 6, 183–187 (2003)

    Google Scholar 

  30. Aggarwal, V., Kılınç, S., Çam, U.: Minimum component SRCO and VFO using a single DVCCC. Analog Integr. Circuits Signal Process. 49, 181–185 (2006)

    Article  Google Scholar 

  31. Kumar, P., Keskin, A.U., Pal, K.: DVCC-based single element controlled oscillators using all-grounded components and simultaneous current-voltage mode outputs. Frequenz 61, 141–144 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upadhyay, A., Pal, K. (2020). DVCC Based Oscillator and Bandpass Filter with Grounded Passive Components. In: Pant, M., Sharma, T., Verma, O., Singla, R., Sikander, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1053. Springer, Singapore. https://doi.org/10.1007/978-981-15-0751-9_121

Download citation

Publish with us

Policies and ethics