Skip to main content

Role of Histone Acetyltransferases in Plant Abiotic Stress

  • Chapter
  • First Online:
Molecular Approaches in Plant Biology and Environmental Challenges

Abstract

In regulation of chromatin dynamics and gene expression, epigenetic modification plays a fundamental role. Acetylation is a histone modification responsible for making the DNA sequence available for transcription factors thus, leading to gene expression. Two functionally antagonistic enzymes, namely Histone acetyltransferase (HAT) and histone deacetylase (HDAC) control histone acetylation level. On encountering stress, several plant genes involved in stress response are activated by the action of HATs. Here, in the chapter we will discuss the role of acetylation in stress management by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18(11):2893–2903

    Article  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407

    Article  CAS  Google Scholar 

  • Bertrand C, Benhamed M, Li YF, Ayadi M, Lemonnier G, Renou JP, Delarue M, Zhou DX (2005) Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth. J Biol Chem 280(2):1465–1473

    Article  CAS  Google Scholar 

  • Brownell JE, Allis CD (1996) Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6(2):176–184

    Article  CAS  Google Scholar 

  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (2010) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res 39(suppl_1):D195–D201

    PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126(1):52–61

    Article  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50(10):1187–1195

    Article  CAS  Google Scholar 

  • Des Marais DL, Juenger TE (2010) Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann NY Acad Sci 1206(1):56–79

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14(8):1675–1690

    Article  CAS  Google Scholar 

  • Gil-Quintana E, Larrainzar E, Seminario A, Díaz-Leal JL, Alamillo JM, Pineda M, Arrese-Igor C, Wienkoop S, González EM (2013) Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. J Exp Bot 64(8):2171–2182

    Article  CAS  Google Scholar 

  • Hassig CA, Schreiber SL (1997) Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1(3):300–308

    Article  CAS  Google Scholar 

  • Hu Y, Zhang L, Zhao L, Li J, He S, Zhou K, Yang F, Huang M, Jiang L, Li L (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS ONE 6(7):e22132

    Article  CAS  Google Scholar 

  • Hu Z, Song N, Zheng M, Liu X, Liu Z, Xing J, Ma J, Guo W, Yao Y, Peng H, Xin M (2015) Histone acetyltransferase GCN 5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84(6):1178–1191

    Article  CAS  Google Scholar 

  • Jeon J, Kim J (2013) Cold stress signaling networks in Arabidopsis. J Plant Biol 56(2):69–76

    Article  CAS  Google Scholar 

  • Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233(4):749–762

    Article  CAS  Google Scholar 

  • Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49(10):1580–1588

    Article  CAS  Google Scholar 

  • Kim JM, To TK, Nishioka T, Seki M (2010) Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ 33(4):604–611

    Article  Google Scholar 

  • Kölle D, Sarg B, Lindner H, Loidl P (1998) Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett 421(2):109–114

    Article  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294

    Article  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20(8):615–626

    Article  CAS  Google Scholar 

  • Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14(1):105

    Article  Google Scholar 

  • Li S, Lin YCJ, Wang P, Zhang B, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X, Wang Z, Dai X (2019) The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell 31(3):663–686

    Article  CAS  Google Scholar 

  • Liu X, Luo M, Zhang W, Zhao J, Zhang J, Wu K, Tian L, Duan J (2012) Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis, subcellular localization and expression. BMC plant biology 12(1):145

    Article  CAS  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251

    Article  CAS  Google Scholar 

  • Lusser A, Eberharter A, Loidl A, Schramel MG, Horngacher M, Haas H, Loidl P (1999) Analysis of the histone acetyltransferase B complex of maize embryos. Nucleic Acids Res 27(22):4427–4435

    Article  CAS  Google Scholar 

  • Ma X, Lv S, Zhang C, Yang C (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32(4):465–478

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  Google Scholar 

  • Mao Y, Pavangadkar KA, Thomashow MF, Triezenberg SJ (2006) Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim Biophys Acta (BBA)-Gene Struct Expr 1759(1–2):69–79

    Google Scholar 

  • Park J, Lim CJ, Shen M, Park HJ, Cha JY, Iniesto E, Rubio V, Mengiste T, Zhu JK, Bressan RA, Lee SY (2018) Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci 115(23):E5400–E5409

    Article  CAS  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87(1):85–94

    Article  CAS  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423(6936):145

    Article  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70(1):81–120

    Article  CAS  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta (BBA)-Gene Regul Mech 1819(2):104–119

    Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227(1):245–254

    Article  CAS  Google Scholar 

  • Srivastava R, Rai KM, Pandey B, Singh SP, Sawant SV (2015) Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex in plants: genome wide identification, evolutionary conservation and functional determination. PLoS ONE 10(8):e0134709

    Article  Google Scholar 

  • Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29(7):1524–1533

    Article  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8(2):96–108

    Article  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41(2):195–211

    Article  CAS  Google Scholar 

  • Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL (2013) A histone acetylation switch regulates H2A. Z deposition by the SWR-C remodeling enzyme. Science 340(6129):195–199

    Google Scholar 

  • Weng M, Yang YUE, Feng H, Pan Z, Shen WH, Zhu YAN, Dong A (2014) Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ 37(9):2128–2138

    Article  CAS  Google Scholar 

  • Xing J, Wang T, Liu Z, Xu J, Yao Y, Hu Z, Peng H, Xin M, Yu F, Zhou D, Ni Z (2015) GENERAL CONTROL NONREPRESSED PROTEIN5-mediated histone acetylation of FERRIC REDUCTASE DEFECTIVE3 contributes to iron homeostasis in Arabidopsis. Plant Physiol 168(4):1309–1320

    Article  CAS  Google Scholar 

  • Yuan L, Liu X, Luo M, Yang S, Wu K (2013) Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol 55(10):892–901

    CAS  PubMed  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259

    Article  CAS  Google Scholar 

  • Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou DX, Ni Z, Sun Q (2019) Histone acetyltransferase GCN 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J 97(3):587–602

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Chandra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, A., Singh, S., Verma, P.C. (2019). Role of Histone Acetyltransferases in Plant Abiotic Stress. In: Singh, S., Upadhyay, S., Pandey, A., Kumar, S. (eds) Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0690-1_5

Download citation

Publish with us

Policies and ethics