Skip to main content

Rheological, Pasting, and Textural Properties of Starch

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

Native starch is an important raw material used in the industry. Rheological, pasting, and textural properties of starch are the major functional properties to determine its applications. Key rheological properties of starch include rheology of starch during heating, viscosity of starch paste, and rheological features of starch gel. The pasting properties of starch are commonly quantified by measuring changes in viscosity during the heating and cooling of starch dispersions. The textural characteristics of starch gels have an important role in the classification of sensory and quality of foods. In this this chapter, the rheological, pasting, and textural properties of starch from different botanical sources are compared, and the impacts of other ingredients (sugars, salts and lipids) on the properties are summarized. The relationship of starch functionalities with food quality is also summarized. The information provided will be useful for the applications of starch in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu W, Budtova T. Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties. Carbohydr Polym. 2013;93(1):199–206.

    CAS  PubMed  Google Scholar 

  2. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke. 2010;62(8):389–420.

    Google Scholar 

  3. Berski W, Ziobro R. Pasting and gel characteristics of normal and waxy maize starch in glucose syrup solutions. J Cereal Sci. 2018;79:253–8.

    CAS  Google Scholar 

  4. Kumar L, Brennan M, Zheng H, Brennan C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem. 2018;245:518–24.

    CAS  PubMed  Google Scholar 

  5. Considine T, Noisuwan A, Hemar Y, Wilkinson B, Bronlund J, Kasapis S. Rheological investigations of the interactions between starch and milk proteins in model dairy systems: a review. Food Hydrocoll. 2011;25(8):2008–17.

    CAS  Google Scholar 

  6. Ren F, Dong D, Yu B, Hou Z, Cui B. Rheology, thermal properties, and microstructure of heat-induced gel of whey protein-acetylated potato starch. Starch-Stärke. 2017;69(9–10):1600344.

    Google Scholar 

  7. Hoover R, Hughes T, Chung HJ, Liu Q. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int. 2010;43(2):399–413.

    CAS  Google Scholar 

  8. Wiesenborn DP, Orr PH, Casper HH, Tacke BK. Potato starch paste behavior as related to some physical/chemical properties. J Food Sci. 1994;59(3):644–8.

    CAS  Google Scholar 

  9. Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: the role of surface proteins and lipids. J Agric Food Chem. 2014;62(16):3636–43.

    CAS  PubMed  Google Scholar 

  10. Kaur L, Singh N, Sodhi NS. Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches. Food Chem. 2002;79(2):183–92.

    CAS  Google Scholar 

  11. Kong X, Kasapis S, Bao J, Corke H. Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. J Sci Food Agric. 2012;92(8):1800–7.

    CAS  PubMed  Google Scholar 

  12. Nep EI, Ngwuluka NC, Kemas CU, Ochekpe NA. Rheological and structural properties of modified starches from the young shoots of Borassus aethiopium. Food Hydrocoll. 2016;60:265–70.

    CAS  Google Scholar 

  13. Li G, Zhu F. Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chem. 2018;241:380–6.

    CAS  PubMed  Google Scholar 

  14. Kim Y, Kim HJ, Cho W, Ko S, Park SK, Lee S. Classification of starch gel texture for the elderly diets based on instrumental and sensory methodology. J Texture Stud. 2017;48(5):357–61.

    PubMed  Google Scholar 

  15. Tabilo-Munizaga G, Barbosa-Cánovas GV. Rheology for the food industry. J Food Eng. 2005;67(1–2):147–56.

    Google Scholar 

  16. Ai Y, Jane JL. Gelatinization and rheological properties of starch. Starch-Stärke. 2015;67(3–4):213–24.

    CAS  Google Scholar 

  17. Singh J, Singh N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem. 2001;75(1):67–77.

    CAS  Google Scholar 

  18. Singh N, Singh J, Kaur L, Singh Sodhi N, Singh GB. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81(2):219–31.

    CAS  Google Scholar 

  19. Tsai ML, Li CF, Lif CY. Effects of granular structures on the pasting behaviors of starches. Cereal Chem. 1998;74(6):750–7.

    Google Scholar 

  20. Freitas RA, Paula RC, Feitosa JPA, Rocha S, Sierakowski MR. Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches. Carbohydr Polym. 2004;55(1):3–8.

    CAS  Google Scholar 

  21. Singh N, Shevkani K, Kaur A, Thakur S, Parmar N, Singh VA. Characteristics of starch obtained at different stages of purification during commercial wet milling of maize. Starch-Stärke. 2014;66(7–8):668–77.

    CAS  Google Scholar 

  22. Singh J, Singh N, Saxena SK. Effect of fatty acids on the rheological properties of corn and potato starch. J Food Eng. 2002;52(1):9–16.

    Google Scholar 

  23. Marcotte M, Art H, Ramaswamy HS. Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Res Int. 2001;34(8):695–703.

    CAS  Google Scholar 

  24. Lagarrigue S, Alvarez G. The rheology of starch dispersions at high temperatures and high shear rates: a review. J Food Eng. 2001;50(4):189–202.

    Google Scholar 

  25. Che LM, Li D, Wang LJ, Özkan N, Chen XD, Mao ZH. Rheological properties of dilute aqueous solutions of cassava starch. Carbohydr Polym. 2008;74(3):385–9.

    CAS  Google Scholar 

  26. Nguyen QD, Jensen CTB, Kristensen PG. Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem Eng J. 1998;70(2):165–71.

    CAS  Google Scholar 

  27. Dintzis FR, Bagley EB. Effects of thermomechanical processing on viscosity behavior of corn starches. J Rheol. 1995;39(6):1483–95.

    CAS  Google Scholar 

  28. Hansen LM, Hoseney RC, Faubion JM. Oscillatory rheometry of starch-water systems: effect of starch concentration and temperature. Cereal Chem. 1991;68(4):347–51.

    CAS  Google Scholar 

  29. Lu ZH, Sasaki T, Li YY, Yoshihashi T, Li LT, Kohyama K. Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel. Food Hydrocoll. 2009;23(7):1712–9.

    CAS  Google Scholar 

  30. Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf. 2015;14(5):568–85.

    CAS  Google Scholar 

  31. Wang YJ, White P, Pollak L. Physicochemical properties of starches from mutant genotypes of the Oh43 inbred line. Cereal Chem. 1993;70(2):199–203.

    CAS  Google Scholar 

  32. Ahmad FB, Williams PA. Effect of salts on the gelatinization and rheological properties of sago starch. J Agric Food Chem. 1999;47(8):3359–66.

    CAS  PubMed  Google Scholar 

  33. Ai Y, Hasjim J, Jane JL. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr Polym. 2013;92(1):120–7.

    CAS  PubMed  Google Scholar 

  34. Ahmad FB, Williams PA. Effect of sugars on the thermal and rheological properties of sago starch. J Agric Food Chem. 1999;49(3):401–12.

    Google Scholar 

  35. Wang S, Copeland L. Effect of acid hydrolysis on starch structure and functionality: a review. Crit Rev Food Sci Nutr. 2015;55(8):1081–97.

    CAS  PubMed  Google Scholar 

  36. Adebowale KO, Lawal OS. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). J Sci Food Agric. 2003;83(15):1541–6.

    CAS  Google Scholar 

  37. Singh J, Kaur L, McCarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review. Food Hydrocoll. 2007;21(1):1–22.

    CAS  Google Scholar 

  38. Collado LS, Mabesa RC, Corke H. Genetic variation in the physical properties of sweet potato starch. J Agric Food Chem. 1999;47(10):4195.

    CAS  PubMed  Google Scholar 

  39. Jane JL, Chen YY, Lee LF, Mcpherson AE, Wong KS, Radosavljevic M, et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;76(5):629–37.

    CAS  Google Scholar 

  40. Ai Y, Nelson B, Birt DF, Jane JL. In vitro and in vivo digestion of octenyl succinic starch. Carbohydr Polym. 2013;98(2):1266–71.

    CAS  PubMed  Google Scholar 

  41. Debet MR, Gidley MJ. Three classes of starch granule swelling: influence of surface proteins and lipids. Carbohydr Polym. 2006;64(3):452–65.

    CAS  Google Scholar 

  42. Wang S, Yu J, Cai J, Wang S, Chao C, Copeland L. Toward a better understanding of starch-monoglyceride-protein interactions. J Agric Food Chem. 2018;66(50):13253–9.

    PubMed  Google Scholar 

  43. Chao C, Yu J, Wang S, Copeland L, Wang S. Mechanisms underlying the formation of complexes between maize starch and lipids. J Agric Food Chem. 2018;66(1):272–8.

    CAS  PubMed  Google Scholar 

  44. Zheng M, Chao C, Yu J, Copeland L, Wang S, Wang S. Effects of chain length and degree of unsaturation of fatty acids on structure and in vitro digestibility of starch-protein-fatty acid complexes. J Agric Food Chem. 2018;66(8):1872–80.

    CAS  PubMed  Google Scholar 

  45. Gunaratne A, Ranaweera S, Corke H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydr Polym. 2007;70(1):112–22.

    CAS  Google Scholar 

  46. Chantaro P, Pongsawatmanit R. Influence of sucrose on thermal and pasting properties of tapioca starch and xanthan gum mixtures. J Food Eng. 2010;98(1):44–50.

    CAS  Google Scholar 

  47. Jyothi AN, Sasikiran K, Sajeev MS, Revamma R, Moorthy SN. Gelatinisation properties of cassava starch in the presence of salts, acids and oxidising agents. Starch-Stärke. 2005;57(11):547–55.

    CAS  Google Scholar 

  48. Shi X, Bemiller JN. Effects of food gums on viscosities of starch suspensions during pasting. Carbohydr Polym. 2002;50(1):7–18.

    CAS  Google Scholar 

  49. Tang MC, Copeland L. Investigation of starch retrogradation using atomic force microscopy. Carbohydr Polym. 2007;70(1):1–7.

    CAS  Google Scholar 

  50. Sandhu K, Singh N. Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem. 2007;101(4):1499–507.

    CAS  Google Scholar 

  51. Fadda C, Sanguinetti AM, Del Caro A, Collar C, Piga A. Bread staling: updating the view. Compr Rev Food Sci Food Saf. 2014;13(4):473–92.

    CAS  Google Scholar 

  52. Waterschoot J, Gomand SV, Fierens E, Delcour JA. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke. 2015;67(1–2):14–29.

    CAS  Google Scholar 

  53. Singh H, Lin JH, Huang WH, Chang YH. Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches. J Cereal Sci. 2012;56(2):367–73.

    CAS  Google Scholar 

  54. Park EY, Baik BK, Lim ST. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J Cereal Sci. 2009;50(1):43–8.

    CAS  Google Scholar 

  55. Karam LB, Grossmann MVE, Silva RSSF, Ferrero C, Zaritzky NE. Gel textural characteristics of corn, cassava and yam starch blends: a mixture surface response methodology approach. Starch-Stärke. 2005;57(2):62–70.

    CAS  Google Scholar 

  56. Kaur A, Shevkani K, Singh N, Sharma P, Kaur S. Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mung bean starches. J Food Sci Technol. 2015;52(12):8113–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar L, Brennan MA, Mason SL, Zheng H, Brennan CS. Rheological, pasting and microstructural studies of dairy protein-starch interactions and their application in extrusion-based products: a review. Starch-Stärke. 2017;69(1–2):1600273.

    Google Scholar 

  58. Saha D, Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol. 2010;47(6):587–97.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (31871796) and Natural Science Foundation of Tianjin City (17JCJQJC45600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Ren, F. (2020). Rheological, Pasting, and Textural Properties of Starch. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_7

Download citation

Publish with us

Policies and ethics