Skip to main content

Multiscale Structures of Starch Granules

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

Native starch is found widely in the form of granules in many tissues of most plant species. Starch granules occur as semi-crystalline complex structure synthesized through coordinated interactions of multiple biosynthetic enzymes, which are influenced by growth environment. The structure of starch granules needs to be explored because of its close relation to functionality and hence applications. This chapter will highlight key features of starch granules, including growth rings, lamellae, blocklets, and helical structures, which have led to knowledge and understanding of properties important for applications of starch products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tetlow IJ. Starch biosynthesis in developing seeds. Seed Sci Res. 2010;21(01):5–32.

    Google Scholar 

  2. Chen W, Lickfield GC, Yang CQ. Molecular modeling of cellulose in amorphous state. Part I: Model building and plastic deformation study. Polymer. 2004;45(3):1063–71.

    CAS  Google Scholar 

  3. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 1990;67(6):551–7.

    CAS  Google Scholar 

  4. Wang S, Copeland L. Phase transitions of pea starch over a wide range of water content. J Agric Food Chem. 2012;60(25):6439–46.

    CAS  PubMed  Google Scholar 

  5. Bertoft E. Understanding starch structure: Recent progress. Agronomy. 2017;7(3):56.

    Google Scholar 

  6. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke. 2010;62(8):389–420.

    Google Scholar 

  7. Jacobs H, Delcour JA. Hydrothermal modifications of granular starch, with retention of the granular structure: A review. J Agric Food Chem. 1998;46(8):2895–905.

    CAS  Google Scholar 

  8. Buléon A, Colonna P, Planchot V, Ball S. Starch granules: Structure and biosynthesis. Int J Biol Macromol. 1998;23(2):85–112.

    PubMed  Google Scholar 

  9. Zobel H. Molecules to granules: A comprehensive starch review. Starch-Stärke. 1988;40(2):44–50.

    CAS  Google Scholar 

  10. Wang S, Copeland L. Effect of acid hydrolysis on starch structure and functionality: A review. Crit Rev Food Sci Nutr. 2015;55(8):1081–97.

    CAS  PubMed  Google Scholar 

  11. Peat S, Whelan W, Thomas GJ. Evidence of multiple branching in waxy maize starch. J Chem Soc. 1952:4536–8.

    Google Scholar 

  12. Hanashiro I, Abe J-i, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res. 1996;283:151–9.

    CAS  Google Scholar 

  13. Hanashiro I, Tagawa M, Shibahara S, Iwata K, Takeda Y. Examination of molar-based distribution of A, B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res. 2002;337(13):1211–5.

    CAS  PubMed  Google Scholar 

  14. Wang S, Li C, Copeland L, Niu Q, Wang S. Starch retrogradation: A comprehensive review. Compr Rev Food Sci Food Saf. 2015;14(5):568–85.

    CAS  Google Scholar 

  15. Vamadevan V, Bertoft E. Structure-function relationships of starch components. Starch-Stärke. 2015;67(1-2):55–68.

    CAS  Google Scholar 

  16. Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocolloids. 2009;23(6):1527–34.

    CAS  Google Scholar 

  17. Wang S, Copeland L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013;4(11):1564–80.

    CAS  PubMed  Google Scholar 

  18. Dhital S, Butardo VM Jr, Jobling SA, Gidley MJ. Rice starch granule amylolysis-differentiating effects of particle size, morphology, thermal properties and crystalline polymorph. Carbohydr Polym. 2015;115:305–16.

    CAS  PubMed  Google Scholar 

  19. Al-Rabadi GJS, Gilbert RG, Gidley MJ. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. J Cereal Sci. 2009;50(2):198–204.

    CAS  Google Scholar 

  20. Dhital S, Shrestha AK, Gidley MJ. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr Polym. 2010;82(2):480–8.

    CAS  Google Scholar 

  21. Xu J, Kuang Q, Wang K, Zhou S, Wang S, Liu X, et al. Insights into molecular structure and digestion rate of oat starch. Food Chem. 2017;220:25–30.

    CAS  PubMed  Google Scholar 

  22. Zhang B, Dhital S, Gidley MJ. Densely packed matrices as rate determining features in starch hydrolysis. Trends Food Sci Technol. 2015;43(1):18–31.

    Google Scholar 

  23. Wang S, Sun Y, Wang J, Wang S, Copeland L. Molecular disassembly of rice and lotus starches during thermal processing and its effect on starch digestibility. Food Funct. 2016;7(2):1188–95.

    CAS  PubMed  Google Scholar 

  24. Wang S, Wang J, Wang S, Wang S. Annealing improves paste viscosity and stability of starch. Food Hydrocolloids. 2017;62:203–11.

    CAS  Google Scholar 

  25. Alvarez-Ramirez J, Vernon-Carter EJ, Carrillo-Navas H, Meraz M. Effects of cooking temperature and time on the color, morphology, crystallinity, thermal properties, starch-lipid complexes formation and rheological properties of roux. LWT-Food Sci Technol. 2018;91:203–12.

    CAS  Google Scholar 

  26. Wang S, Wang S, Liu L, Wang S, Copeland L. Structural orders of wheat starch do not determine the in vitro enzymatic digestibility. J Agric Food Chem. 2017;65(8):1697–706.

    CAS  PubMed  Google Scholar 

  27. Fannon JE, Hauber RJ, BeMiller JN. Surface pores of starch granules. Cereal Chem. 1992;69(3):284–8.

    Google Scholar 

  28. Fannon JE, Shull JM, Bemiller JN. Interior channels of starch granules. Cereal Chem. 1993;70:611.

    Google Scholar 

  29. Huber KC, BeMiller JN. Channels of maize and sorghum starch granules. Carbohydr Polym. 2000;41(3):269–76.

    CAS  Google Scholar 

  30. Han X-Z, Benmoussa M, Gray JA, BeMiller JN, Hamaker BR. Detection of proteins in starch granule channels. Cereal Chem. 2005;82(4):351–5.

    CAS  Google Scholar 

  31. Morrison WR, Milligan TP, Azudin MN. A relationship between the amylose and lipid contents of starches from diploid cereals. J Cereal Sci. 1984;2(4):257–71.

    CAS  Google Scholar 

  32. Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: The role of surface proteins and lipids. J Agric Food Chem. 2014;62(16):3636–43.

    CAS  PubMed  Google Scholar 

  33. Nor Nadiha MZ, Fazilah A, Bhat R, Karim AA. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chem. 2010;121(4):1053–9.

    CAS  Google Scholar 

  34. Putaux J-L, Molina-Boisseau S, Momaur T, Dufresne A. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules. 2003;4(5):1198–202.

    CAS  PubMed  Google Scholar 

  35. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151–65.

    CAS  Google Scholar 

  36. Yamaguchi M, Kainuma K, French D. Electron microscopic observations of waxy maize starch. J Ultrastruct Res. 1979;69(2):249–61.

    CAS  PubMed  Google Scholar 

  37. French D. Organization of starch granules. In: Whistler RL, Bemiller JN, Paschall EF, editors. Starch: Chemistry and Technology. 2nd ed. Amsterdam: Academic Press; 1984. p. 183–247.

    Google Scholar 

  38. French D. Fine structure of starch and its relationship to the organization of starch granules. J Jap Soc Starch Sci. 1972;19(1):8–25.

    CAS  Google Scholar 

  39. Chen P, Yu L, Simon GP, Liu X, Dean K, Chen L. Internal structures and phase-transitions of starch granules during gelatinization. Carbohydr Polym. 2011;83(4):1975–83.

    CAS  Google Scholar 

  40. Wang S, Blazek J, Gilbert E, Copeland L. New insights on the mechanism of acid degradation of pea starch. Carbohydr Polym. 2012;87(3):1941–9.

    CAS  Google Scholar 

  41. Blazek J, Gilbert EP. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr Polym. 2011;85(2):281–93.

    CAS  Google Scholar 

  42. Cameron RE, Donald AM. A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer. 1992;33(12):2628–35.

    CAS  Google Scholar 

  43. Gallant DJ, Bouchet B, Baldwin PM. Microscopy of starch: Evidence of a new level of granule organization. Carbohydr Polym. 1997;32(3):177–91.

    CAS  Google Scholar 

  44. Tang H, Mitsunaga T, Kawamura Y. Molecular arrangement in blocklets and starch granule architecture. Carbohydr Polym. 2006;63(4):555–60.

    CAS  Google Scholar 

  45. Yang Z, Chaib S, Gu Q, Hemar Y. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocolloids. 2017;68:164–77.

    CAS  Google Scholar 

  46. Wang S, Li P, Yu J, Guo P, Wang S. Multi-scale structures and functional properties of starches from Indica hybrid, Japonica and waxy rice. Int J Biol Macromol. 2017;102:136–43.

    CAS  PubMed  Google Scholar 

  47. Jenkins PJ, Cameron RE, Donald AM. A universal feature in the structure of starch granules from different botanical sources. Starch-Stärke. 1993;45(12):417–20.

    CAS  Google Scholar 

  48. Kuang Q, Xu J, Liang Y, Xie F, Tian F, Zhou S, et al. Lamellar structure change of waxy corn starch during gelatinization by time-resolved synchrotron SAXS. Food Hydrocolloids. 2017;62:43–8.

    CAS  Google Scholar 

  49. Yuryev VP, Krivandin AV, Kiseleva VI, Wasserman LA, Genkina NK, Fornal J, et al. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr Res. 2004;339(16):2683–91.

    CAS  PubMed  Google Scholar 

  50. Li M, Dhital S, Wei Y. Multilevel structure of wheat starch and its relationship to noodle eating qualities. Compr Rev Food Sci Food Saf. 2017;16(5):1042–55.

    CAS  Google Scholar 

  51. Qiao D, Xie F, Zhang B, Zou W, Zhao S, Niu M, et al. A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocolloids. 2017;65:24–34.

    CAS  Google Scholar 

  52. Jenkins P, Donald A. The influence of amylose on starch granule structure. Int J Biol Macromol. 1995;17(6):315–21.

    CAS  PubMed  Google Scholar 

  53. Koroteeva DA, Kiseleva VI, Krivandin AV, Shatalova OV, Blaszczak W, Bertoft E, et al. Structural and thermodynamic properties of rice starches with different genetic background: Part 2. Defectiveness of different supramolecular structures in starch granules. Int J Biol Macromol. 2007;41(5):534–47.

    CAS  PubMed  Google Scholar 

  54. Donald AM, Kato KL, Perry PA, Weigh TA. Scattering studies of the internal structure of starch granules. Starch-Starke. 2001;53(10):504–12.

    CAS  Google Scholar 

  55. Imberty A, Perez S. A revisit to the three-dimensional structure of B-type starch. Biopolymers. 1988;27(8):1205–21.

    CAS  Google Scholar 

  56. Popov D, Buléon A, Burghammer M, Chanzy H, Montesanti N, Putaux JL, et al. Crystal structure of A-amylose: A revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules. 2009;42(4):1167–74.

    CAS  Google Scholar 

  57. Shi Y-C, Capitani T, Trzasko P, Jeffcoat R. Molecular structure of a low-amylopectin starch and other high-amylose maize starches. J Cereal Sci. 1998;27(3):289–99.

    CAS  Google Scholar 

  58. Tester RF, Debon SJJ, Sommerville MD. Annealing of maize starch. Carbohydr Polym. 2000;42(3):287–99.

    CAS  Google Scholar 

  59. Gidley MJ. Factors affecting the crystalline type (A-C) of native starches and model compounds: A rationalisation of observed effects in terms of polymorphic structures. Carbohydr Res. 1987;161(2):301–4.

    CAS  Google Scholar 

  60. Gidley MJ. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules. 1989;22(1):351–8.

    CAS  Google Scholar 

  61. Tan I, Flanagan BM, Halley PJ, Whittaker AK, Gidley MJ. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules. 2007;8(3):885–91.

    CAS  PubMed  Google Scholar 

  62. Imberty A, Chanzy H, Pérez S, Bulèon A, Tran V. The double-helical nature of the crystalline part of A-starch. J Mol Biol. 1988;201(2):365–78.

    CAS  PubMed  Google Scholar 

  63. Jane JL. Current understanding on starch granule structures. J Appl Glycosci. 2006;53(3):205–13.

    CAS  Google Scholar 

  64. Zobel HF. Starch crystal transformations and their industrial importance. Starch-Stärke. 1988;40(1):1–7.

    CAS  Google Scholar 

  65. Zhu F. Atomic force microscopy of starch systems. Crit Rev Food Sci Nutr. 2017;57(14):3127–44.

    CAS  PubMed  Google Scholar 

  66. Li JH, Vasanthan T, Hoover R, Rossnagel BG. Starch from hull-less barley: Ultrastructure and distribution of granule-bound proteins. Cereal Chem. 2003;80(5):524–32.

    CAS  Google Scholar 

  67. Oostergetel GT, van Bruggen EF. The crystalline domains in potato starch granules are arranged in a helical fashion. Carbohydr Polym. 1993;21(1):7–12.

    CAS  Google Scholar 

  68. Bertoft E. On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr Polym. 2004;57(2):211–24.

    CAS  Google Scholar 

  69. Waigh TA, Donald AM, Heidelbach F, Riekel C, Gidley MJ. Analysis of the native structure of starch granules with small angle X-ray microfocus scattering. Biopolymers. 1999;49(1):91–105.

    CAS  Google Scholar 

  70. Baldwin PM, Adler J, Davies MC, Melia CD. High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci. 1998;27(3):255–65.

    Google Scholar 

  71. Bertoft E. Composition of building blocks in clusters from potato amylopectin. Carbohydr Polym. 2007;70(1):123–36.

    CAS  Google Scholar 

  72. Takeda Y, Shibahara S, Hanashiro I. Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr Res. 2003;338(5):471–5.

    CAS  PubMed  Google Scholar 

  73. Bertoft E, Koch K. Composition of chains in waxy-rice starch and its structural units. Carbohydr Polym. 2000;41(2):121–32.

    CAS  Google Scholar 

  74. Kong X, Corke H, Bertoft E. Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res. 2009;344(13):1701–8.

    CAS  PubMed  Google Scholar 

  75. Laohaphatanaleart K, Piyachomkwan K, Sriroth K, et al. The fine structure of cassava starch amylopectin: Part 1: Organization of clusters. Int J Biol Macromol. 2010;47(3):317–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Xu, H., Luan, H. (2020). Multiscale Structures of Starch Granules. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_4

Download citation

Publish with us

Policies and ethics