Skip to main content

Fine Structure of Amylose and Amylopectin

  • Chapter
  • First Online:
Starch Structure, Functionality and Application in Foods

Abstract

Starch granules consist of two types of polymeric components, essentially linear amylose and branched amylopectin. Ratios and fine structure of these two polymers determine the starch functional properties and starch applications in food and non-food industries. Amylose fine structure can be characterized by two features, molecular size and structure of branching. Amylopectin consists of numerous short chains, with a chain length of ~6–35 glucosidic units, of α-(1, 4)-linked D-glucose residues, which are interlinked to form clusters defined as groups of chains through their reducing end side by α-(1, 6)-linkages, and the macromolecule of amylopectin exhibits a heavily branched structure built from about 95% (1→4)-α- and 5% (1→6)-α-linkages. Chain length profile and cluster model of amylopectin can provide a useful conceptual basis for understanding the structure of the amylopectin and guide current thinking related to amylopectin biosynthesis and physical behavior. This chapter reviews the structural characteristics of amylose and amylopectin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoft E. Understanding starch structure: Recent progress. Agronomy. 2017;7(3):56.

    Google Scholar 

  2. Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buléon A, Holm PB, Hebelstrup KH. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol. 2012;12:223.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kong X, Bertoft E, Bao J, Corke H. Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. Int J Biol Macromol. 2008;43:377–82.

    CAS  PubMed  Google Scholar 

  4. Syahariza ZA, Sar S, Hasjim J, Tizzotti MJ, Gilbert RG. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Food Chem. 2013;136:742–9.

    CAS  PubMed  Google Scholar 

  5. Wang K, Hasjim J, Wu AC, Henry RJ, Gilbert RG. Variation in amylose fine structure of starches from different botanical sources. J Agric Food Chem. 2014;62:4443–53.

    CAS  PubMed  Google Scholar 

  6. Kong X, Zhu P, Sui Z, Bao J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015;172:433–40.

    CAS  PubMed  Google Scholar 

  7. Kong X, Chen Y, Zhu P, Sui Z, Corke H, Bao J. Relationships among genetic, structural, and functional properties of rice starch. J Agric Food Chem. 2015;63:6241–8.

    CAS  PubMed  Google Scholar 

  8. Kong X, Kasapis S, Zhu P, Sui Z, Bao J, Corke H. Physicochemical and structural characteristics of starches from Chinese hull-less barley cultivars. Int J Food Sci Technol. 2016;51:509–18.

    CAS  Google Scholar 

  9. Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016;196:702–11.

    CAS  PubMed  Google Scholar 

  10. Hanes CS. The action of amylases in relation to the structure of starch and its metabolism in the plant. Part IV–VII. New Phytol. 1937;36:189–239.

    CAS  Google Scholar 

  11. Meyer KH, Brentano W, Bernfeld P. Recherches sur l’amidon II. Sur la nonhomogénéité de l’amidon. Helv Chim Acta. 1940;23:845–53.

    CAS  Google Scholar 

  12. Meyer KH, Bernfeld P, Wolff E. Recherches sur l’amidon III. Fractionnement et purification de l’amylose de maïs naturel. Helv Chim Acta. 1940;23:854–64.

    CAS  Google Scholar 

  13. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39:151–65.

    CAS  Google Scholar 

  14. Chen MH, Bergman CJ. Method for determining the amylose content, molecular weights, and weight- and molar-based distributions of degree of polymerization of amylose and fine-structure of amylopectin. Carbohydr Polym. 2007;69(3):562–78.

    CAS  Google Scholar 

  15. Mestres C, Matencio F, Pons B, Yajid M, Fliedel G. A rapid method for the determination of amylose content by using differential scanning calorimetry. Starch-Stärke. 1996;48:2–6.

    CAS  Google Scholar 

  16. Gibson TS, Solah V, McCleary BV. A procedure to measure amylose in cereal starches and flours with concanavalin. J Cereal Sci. 1997;25:111–9.

    CAS  Google Scholar 

  17. Batey IL, Curtin BM. Measurement of amylose/amylopectin ratio by high-performance liquid chromatography. Starch-Starke. 1996;48:338–44.

    CAS  Google Scholar 

  18. Blennow A, Bay-Smidt AM, Bauer R. Amylopectin aggregation as a function of starch phosphate content studied by size exclusion chromatography and on-line refractive index and light scattering. Int J Biol Macromol. 2001;28:409–20.

    CAS  PubMed  Google Scholar 

  19. Noosuk P, Hill SE, Pradipasena P, Mitchell JR. Structure-viscosity relationships for Thai rice starches. Carbohydr Polym. 2003;55:337–44.

    CAS  Google Scholar 

  20. Campbell MR, Yeager H, Abdubek N, Pollak LM, Glover DV. Comparison of methods for amylose screening among amylose-extender (ae) maize starches from exotic backgrounds. Cereal Chem. 2002;79:317–21.

    CAS  Google Scholar 

  21. Hanashiro I. Fine structure of amylose. In: Nakamura Y, editor. Starch: Metabolism and Structure. Tokyo: Springer; 2015. p. 41–60.

    Google Scholar 

  22. Miles MJ, Morris VJ, Ring SG. Gelation of amylose. Carbohydr Res. 1985;135:257–69.

    CAS  Google Scholar 

  23. Hizukuri S, Takagi T. Estimation of the distribution of molecular weight for amylose by the low-angle laser-light-scattering technique combined with high-performance gel chromatography. Carbohydr Res. 1984;134:1–10.

    CAS  Google Scholar 

  24. Hanashiro I, Takeda Y. Examination of number-average degree of polymerization and molar-based distribution of amylose by fluorescent labeling with 2-aminopyridine. Carbohydr Res. 1998;306:421–6.

    CAS  PubMed  Google Scholar 

  25. Takeda Y, Hizukuri S, Juliano BO. Purification and structure of amylose from rice starch. Carbohydr Res. 1986;148:299–308.

    CAS  Google Scholar 

  26. Hizukuri S, Takeda Y, Yasuda M, Suzuki A. Multi-branched nature of amylose and the action of debranching enzymes. Carbohydr Res. 1981;94:205–13.

    CAS  Google Scholar 

  27. Manners DJ, Bathgate GN. α-1,4-glucans. Part XX. The molecular structure of the starches from oats and malted oats. J Inst Brew. 1969;75(2):169–75.

    CAS  Google Scholar 

  28. Takeda Y, Hizukuri S, Takeda C, Suzuki A. Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules. Carbohydr Res. 1987;165:139–45.

    CAS  Google Scholar 

  29. Takeda Y, Maruta N, Hizukuri S. Examination of the structure of amylose by tritium labelling of the reducing terminal. Carbohydr Res. 1992;227:113–20.

    CAS  Google Scholar 

  30. Hanashiro I, Sakaguchi I, Yamashita H. Branched structures of rice amylose examined by differential fluorescence detection of side-chain distribution. J Appl Glycosci. 2013;60:79–85.

    CAS  Google Scholar 

  31. Gunning AP, Giardina TP, Faulds CB, Juge N, Ring SG, Williamson G, Morris VJ. Surfactant-mediated solubilisation of amylose and visualisation by atomic force microscopy. Carbohydr Polym. 2003;51:177–82.

    CAS  Google Scholar 

  32. Banks W, Greenwood CT. Physicochemical studies on starches. Part XXXII. The incomplete β-amylolysis of amylose: A discussion of its cause and implications. Starch-Starke. 1967;19:197–206.

    CAS  Google Scholar 

  33. Hizukuri S, Takeda Y, Maruta N, Juliano BO. Molecular structures of rice starch. Carbohydr Res. 1989;189:227–35.

    CAS  Google Scholar 

  34. Bertoft E. Fine structure of amylopectin. In: Nakamura Y, editor. Starch: Metabolism and Structure. Tokyo: Springer; 2015. p. 3–40.

    Google Scholar 

  35. Bertoft E. Composition of clusters and their arrangement in potato amylopectin. Carbohydr Polym. 2007;68:433–46.

    CAS  Google Scholar 

  36. Buléon A, Colonna P, Planchot V, Ball S. Starch granules: Structure and biosynthesis. Int J Biol Macromol. 1998;23:85–112.

    PubMed  Google Scholar 

  37. Takeda Y, Shibahara S, Hanashiro I. Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr Res. 2003;338:471–5.

    CAS  PubMed  Google Scholar 

  38. Hanashiro I, Abe JI, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res. 1996;283:151–9.

    CAS  Google Scholar 

  39. Bertoft E. Analyzing starch molecular structure. In: Sjöö M, Nilsson L, editors. Starch in Food: Structure, Function and Applications. 2nd ed. New York: Woodhead Publishing; 2017. p. 97–149.

    Google Scholar 

  40. Kong X, Corke H, Bertoft E. Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res. 2009;344:1701–8.

    CAS  PubMed  Google Scholar 

  41. Nikuni Z. Starch and cooking (in Japanese). Sci Cook. 1969;2:6–14.

    Google Scholar 

  42. Nikuni Z. Studies on starch granules. Starch-Stärke. 1978;30:105–11.

    CAS  Google Scholar 

  43. French D. Fine structure of starch and its relationship to the organization of starch granules. J Jap Soc Starch Sci. 1972;19:8–25.

    CAS  Google Scholar 

  44. Robin JP, Mercier C, Charbonnière R, Guilbot A. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 1974;51:389–406.

    CAS  Google Scholar 

  45. Finch P, Sebesta DW. The amylase of Pseudomonas stutzeri as a probe of the structure of amylopectin. Carbohydr Res. 1992;227:c1–4.

    CAS  Google Scholar 

  46. Bender H, Siebert R, Stadler-Szöke A. Can cyclodextrin glycosyltransferase be useful for the investigation of the fine structure of amylopectins?: Characterisation of highly branched clusters isolated from digests with potato and maize starches. Carbohydr Res. 1982;110:245–59.

    CAS  Google Scholar 

  47. Bertoft E, Koch K, Åman P. Building block organisation of clusters in amylopectin from different structural types. Int J Biol Macromol. 2012;50:1212–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangli Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, X. (2020). Fine Structure of Amylose and Amylopectin. In: Wang, S. (eds) Starch Structure, Functionality and Application in Foods. Springer, Singapore. https://doi.org/10.1007/978-981-15-0622-2_3

Download citation

Publish with us

Policies and ethics