Skip to main content

Discrete Periodical Model of Microstrip Line with Cascaded Elementary L-Cells

  • Chapter
  • First Online:
Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution

Abstract

The mankind society and way of life become more and more dependent on electronic equipments. This technological dependence manifests, in particular, with the strong needs of personal computers at work, mobile phones (2.5G, 3G and 4G) of population anytime and anywhere around the world and boom of video games (Ju in IEEE Wirel Des Mag 28–30, 2007, [1]; Wells in IEEE Microwave Mag 104–112, (2009), [2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ju, Wide-bandwidth video switch matrix drivers and transmission technology in consumer electronics. IEEE Wirel. Des. Mag. 28–30 (2007)

    Google Scholar 

  2. J.J. Wells, Faster than fiber: the future of multi-Gb/s wireless. IEEE Microwave Mag. 104–112 (2009)

    Article  Google Scholar 

  3. International Technology Roadmap for Semiconductors Update Overview. [Online] http://www.itrs.net/Links/2016ITRS/Home2016.htm

  4. A. Allan, Overall Roadmap Technology Characteristics, in ITRS Winter Conference, Makuhara, Japan, December 2007

    Google Scholar 

  5. Y. Tomita, M. Kibune, J. Ogawa, W. W. Walker, H. Tamura, T. Kuroda, A 10 Gb/s receiver with series equalizer and on-chip ISI monitor in 0.11 µm CMOS. J. Solid-State Circuits 40(4) (2005)

    Google Scholar 

  6. M. Voutilainen, M. Rouvala, P. Kotiranta, T. Rauner, Multi-Gigabit serial link emissions and mobile terminal antenna interference, in Proceedings of 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  7. W. Maichen, When digital becomes analog-interfaces in high speed test, Tutorial course, in Proceedings of 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  8. J. Zhang, T.Y. Hsiang, Extraction of subterahertz transmission-line parameters of coplanar waveguides. PIERS Online 3(7), 1102–1106 (2007)

    Article  Google Scholar 

  9. K.O. Kenneth, Affordable terahertz electronics. IEEE Microwave Mag. 113–116 (2009)

    Google Scholar 

  10. J.L. Wyatt Jr., Q. Yu, Signal delay in RC meshes, trees and lines, in Proceedings of IEEE ICAD, pp. 15–17 (1984)

    Google Scholar 

  11. Y.I. Ismail, E.G. Friedman, J.L. Neves, Equivalent Elmore delay for RLC trees. IEEE Trans. CAD 19(1), 83–97 (2000)

    Article  Google Scholar 

  12. X.-C. Li, J.-F. Mao, M. Tang, High-speed clock tree simulation method based on moment matching. PIERS 2005, Hangzhou, China, pp. 178–181, 22–26 Aug 2005

    Article  MathSciNet  Google Scholar 

  13. V. Champac, V. Avendano, J. Figueras, Built-in sensor for signal integrity faults in digital interconnect signals. IEEE Trans. VLSI 18(2), 256–269 (2010)

    Article  Google Scholar 

  14. A. Nieuwoudt, J. Kawa, Y. Massoud, Crosstalk-induced delay, noise, and interconnect planarization implications of fill metal in nanoscale process technology. IEEE Trans. VLSI 18(3), 378–391 (2010)

    Article  Google Scholar 

  15. A.K. Palit, V. Meyer, K.K. Duganapalli, W. Anheier, J. Schloeffel, Test pattern generation based on predicted signal integrity loss through reduced order interconnect model, in Proceedings of 16th Workshop Test Methods and Reliability of Circuits and Systems, pp. 84–88, March 2004

    Google Scholar 

  16. A.C. Scogna, A. Orlandi, V. Ricciuti, Signal and power integrity performances of striplines in presence of 2D EBG planes, in Proceedings of 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  17. A. Deutsch, High-speed signal propagation on lossy transmission lines. IBM J. Res. Develop. 34(4), 601–615 (1990)

    Article  MathSciNet  Google Scholar 

  18. F. Schnieder, W. Heinrich, Model of thin-film microstrip line for circuit design. IEEE Trans. MTT 49(1), 104–110 (2001)

    Article  Google Scholar 

  19. J. Cong, L. He, C.K. Koh, P.H. Madden, Performance optimization of VLSI interconnect layout. Integr. VLSI J. 21(1–2), 1–94 (1996)

    Article  Google Scholar 

  20. M. Qungang, Y. Yintang, L. Yuejin, J. Xinzhang, Optimal cascade lumped model of deep submicron on-chip interconnect with distributed parameters. Microelectron. Eng. 77, 310–318 (2005)

    Article  Google Scholar 

  21. W.C. Elmore, The transient response of damped linear networks. J. Appl. Phys. 19, 55–63 (1948)

    Article  Google Scholar 

  22. L. Wyatt, Circuit analysis, simulation and design. North-Holland (Elsiever Science, The Netherlands, 1978)

    Google Scholar 

  23. A.B. Kahng, S. Muddu, An analytical delay model of RLC interconnects. IEEE Trans. CAD 16, 1507–1514 (1997)

    Article  Google Scholar 

  24. A. Ligocka, W. Bandurski, Effect of inductance on interconnect propagation delay in VLSI circuits, in Proceedings of 8th Workshop on SPI, Heidelberg, Germany, pp. 121–124, 9–12 May 2004

    Google Scholar 

  25. V. Adler, E.G. Friedman, Repeater design to reduce delay and power in resistive interconnect. IEEE Trans. CAS II, Analog Digit. Sig. Process. 54(5), 607–616 (1998)

    Google Scholar 

  26. Y.I. Ismail, E.G. Friedman, Effects of inductance on the propagation, delay and repeater insertion in VLSI circuits. IEEE Trans. VLSI 8(2), 195–206 (2000)

    Article  Google Scholar 

  27. B. Ravelo, A. Perennec, M. Le Roy, in New technique of inter-chip interconnect effects equalization with negative group delay active circuits, ed by Z. Wang, INTECH Book, VLSI, Chap. 20, February 2010, pp. 409–434

    Google Scholar 

  28. B. Ravelo, A. Perennec, M. Le Roy, Equalization of interconnect propagation delay with negative group delay active circuits, in Proceedings of 11th IEEE Workshop on SPI, Genova, Italy, pp. 15–18, May 2007

    Google Scholar 

  29. B. Ravelo, A. Perennec, M. Le Roy, Application of negative group delay active circuits to reduce the 50% propagation delay of RC-line model, in Proceedings of 12th IEEE Workshop on SPI, Avignon, France, May 2008

    Google Scholar 

  30. B. Ravelo, A. Perennec, M. Le Roy, Experimental validation of the RC-interconnect effect equalization with negative group delay active circuit in planar hybrid technology, in Proceedings of 13th IEEE Workshop on SPI, Strasbourg, France, May 2009

    Google Scholar 

  31. T. Eudes, B. Ravelo, A. Louis, Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis. Prog. Electromagnet. Res. (PIER) J. 112, 183–197 (2011)

    Article  Google Scholar 

  32. B. Ravelo, T. Eudes, Fast estimation of RL-loaded microelectronic interconnections delay for the signal integrity prediction. Int. J. Numer. Model. Electron. Networks Devices Fields 25(4), 338–346 (2012)

    Article  Google Scholar 

  33. B. Ravelo, Microelectronic interconnect modeling with a periodical lumped RLC-network. Turk. J. Electr. Eng. Comput. Sci. 21:747–757 (2013)

    Google Scholar 

  34. Agilent EEsof EDA, Overview: Electromagnetic Design System (EMDS), (September 2008) [Online]. Available http://www.agilent.com/find/eesof-emds

  35. Ansoft corporation, Simulation software: high-performance signal and power integrity, Internal Report (2006)

    Google Scholar 

  36. ANSYS, Unparalleled advancements in signal- and power-integrity, electromagnetic compatibility testing (16 June 2009) [Online]. Available http://investors.ansys.com/

  37. North East Systems Associates (NESA), RJ45 interconnect signal integrity (2010 CST Computer Simulation Technology AG) [Online]. Available http://www.cst.com/Content/Applications/Article/Article.aspx?id=243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lala Rajaoarisoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravelo, B., Rajaoarisoa, L. (2020). Discrete Periodical Model of Microstrip Line with Cascaded Elementary L-Cells. In: Ravelo, B. (eds) Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution. Springer, Singapore. https://doi.org/10.1007/978-981-15-0552-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0552-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0551-5

  • Online ISBN: 978-981-15-0552-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics