Skip to main content

B-Cell Precursor ALL

  • Chapter
  • First Online:
Pediatric Acute Lymphoblastic Leukemia
  • 1034 Accesses

Abstract

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common form of pediatric ALL, consisting of >80% of ALL during childhood. In the past ALL was intractable, but now the survival probability is as high as 80–90%. Improved supportive care, treatment stratification based on relapse risk, biological features of leukemic cells, and optimization of treatment regimens by clinical trials have contributed to this dramatic improvement. Treatment regimens typically consist of induction therapy with steroids, vincristine, and asparaginase with or without anthracycline, followed by multiagent consolidation including high-dose/escalating methotrexate and re-induction therapy. After consolidation, less intensive maintenance therapy with thiopurines lasting for 1–2 years is given to maintain event free survival of the patients. The introduction of newly developed agents such as molecular targeted drugs or immunotherapy, and social supports including long-term follow up are required for further reduction of relapse risk without excess toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943–55.

    Article  PubMed  Google Scholar 

  2. Pui CH, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 2018;60:4–12.

    Article  PubMed  Google Scholar 

  4. Tubergen DG, Gilchrist GS, O'Brien RT, et al. Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting features: a Childrens cancer group phase III trial. J Clin Oncol. 1993;11:527–37.

    Article  CAS  PubMed  Google Scholar 

  5. Koh K, Kato M, Saito AM, et al. Phase II/III study in children and adolescents with newly diagnosed B-cell precursor acute lymphoblastic leukemia: protocol for a nationwide multicenter trial in Japan. Jpn J Clin Oncol. 2018;48:684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schrappe M, Nachman J, Hunger S, et al. Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985-2000). Leukemia. 2010;24:253–4.

    Article  CAS  PubMed  Google Scholar 

  7. Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14:18–24.

    Article  CAS  PubMed  Google Scholar 

  8. Moorman AV, Ensor HM, Richards SM, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11:429–38.

    Article  CAS  PubMed  Google Scholar 

  9. Manabe A, Ohara A, Hasegawa D, et al. Significance of the complete clearance of peripheral blasts after 7 days of prednisolone treatment in children with acute lymphoblastic leukemia: the Tokyo Children's cancer study group study L99-15. Haematologica. 2008;93:1155–60.

    Article  CAS  PubMed  Google Scholar 

  10. Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15:809–18.

    Article  PubMed  Google Scholar 

  11. Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14:199–209.

    Article  CAS  PubMed  Google Scholar 

  12. O'Connor D, Bate J, Wade R, et al. Infection-related mortality in children with acute lymphoblastic leukemia: a retrospective analysis of infectious deaths on UKALL 2003. Blood. 2014;124(7):1056–61.

    Article  CAS  PubMed  Google Scholar 

  13. Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi H, Kajiwara R, Kato M, et al. Treatment outcome of children with acute lymphoblastic leukemia: the Tokyo Children's cancer study group (TCCSG) study L04-16. Int J Hematol. 2018;108:98–108.

    Article  PubMed  Google Scholar 

  16. Schmiegelow K, Attarbaschi A, Barzilai S, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol. 2016;17:e231–9.

    Article  PubMed  Google Scholar 

  17. Moricke A, Zimmermann M, Valsecchi MG, et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood. 2016;127:2101–12.

    Article  CAS  PubMed  Google Scholar 

  18. Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's cancer group. Blood. 2003;101:3809–17.

    Article  CAS  PubMed  Google Scholar 

  19. Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic Leukemia: a report from Children's oncology group study AALL0232. J Clin Oncol. 2016;34:2380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Igarashi S, Manabe A, Ohara A, et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s cancer study group L95-14 protocol. J Clin Oncol. 2005;23:6489–98.

    Article  CAS  PubMed  Google Scholar 

  21. Domenech C, Suciu S, De Moerloose B, et al. Dexamethasone (6 mg/m2/day) and prednisolone (60 mg/m2/day) were equally effective as induction therapy for childhood acute lymphoblastic leukemia in the EORTC CLG 58951 randomized trial. Haematologica. 2014;99:1220–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11:1096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber Cancer Institute ALL consortium protocol 95-01 for children with acute lymphoblastic leukemia. Blood. 2007;109:896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ram R, Wolach O, Vidal L, Gafter-Gvili A, Shpilberg O, Raanani P. Adolescents and young adults with acute lymphoblastic leukemia have a better outcome when treated with pediatric-inspired regimens: systematic review and meta-analysis. Am J Hematol. 2012;87:472–8.

    Article  PubMed  Google Scholar 

  25. Grace RF, Dahlberg SE, Neuberg D, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol. 2011;152:452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vrooman LM, Stevenson KE, Supko JG, et al. Postinduction dexamethasone and individualized dosing of Escherichia coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study—Dana-Farber Cancer Institute ALL consortium protocol 00-01. J Clin Oncol. 2013;31:1202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nesbit M, Chard R, Evans A, Karon M, Hammond GD. Evaluation of intramuscular versus intravenous administration of L-asparaginase in childhood leukemia. Am J Pediatr Hematol Oncol. 1979;1:9–13.

    CAS  PubMed  Google Scholar 

  28. Pidaparti M, Bostrom B. Comparison of allergic reactions to pegasparaginase given intravenously versus intramuscularly. Pediatr Blood Cancer. 2012;59:436–9.

    Article  PubMed  Google Scholar 

  29. Duval M, Suciu S, Ferster A, et al. Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children's Leukemia group phase 3 trial. Blood. 2002;99:2734–9.

    Article  CAS  PubMed  Google Scholar 

  30. Place AE, Stevenson KE, Vrooman LM, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label phase 3 trial. Lancet Oncol. 2015;16:1677–90.

    Article  CAS  PubMed  Google Scholar 

  31. Schrappe M, Hunger SP, Pui CH, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med. 2012;366:1371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24:265–84.

    Article  CAS  PubMed  Google Scholar 

  33. Nachman J, Sather HN, Gaynon PS, Lukens JN, Wolff L, Trigg ME. Augmented Berlin-Frankfurt-Munster therapy abrogates the adverse prognostic significance of slow early response to induction chemotherapy for children and adolescents with acute lymphoblastic leukemia and unfavorable presenting features: a report from the Children's cancer group. J Clin Oncol. 1997;15:2222–30.

    Article  CAS  PubMed  Google Scholar 

  34. Matloub Y, Bostrom BC, Hunger SP, et al. Escalating intravenous methotrexate improves event-free survival in children with standard-risk acute lymphoblastic leukemia: a report from the Children’s oncology group. Blood. 2011;118:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seibel NL, Steinherz PG, Sather HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s oncology group. Blood. 2008;111:2548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic Leukemia: results from the Children's oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018;36:2926–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaynon PS, Trigg ME, Heerema NA, et al. Children's cancer group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14:2223–33.

    Article  CAS  PubMed  Google Scholar 

  38. Schrappe M, Bleckmann K, Zimmermann M, et al. Reduced-intensity delayed intensification in standard-risk Pediatric acute lymphoblastic Leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). J Clin Oncol. 2018;36:244–53.

    Article  CAS  PubMed  Google Scholar 

  39. Mattano LA Jr, Devidas M, Nachman JB, et al. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012;13:906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical Pharmacogenetics implementation consortium guideline for Thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105.

    Article  CAS  PubMed  Google Scholar 

  41. Lonsdale D, Gehan EA, Fernbach DJ, Sullivan MP, Lane DM, Ragab AH. Interrupted vs. continued maintenance therapy in childhood acute leukemia. Cancer. 1975;36:341–52.

    Article  CAS  PubMed  Google Scholar 

  42. Toyoda Y, Manabe A, Tsuchida M, et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol. 2000;18:1508–16.

    Article  CAS  PubMed  Google Scholar 

  43. Childhood ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12 000 randomised children. Lancet. 1996;347:1783–8.

    Article  Google Scholar 

  44. Schmiegelow K, Al-Modhwahi I, Andersen MK, et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood. 2009;113:6077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kato M, Ishimaru S, Seki M, et al. Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia. 2017;31:580–4.

    Article  CAS  PubMed  Google Scholar 

  46. Conter V, Valsecchi MG, Silvestri D, et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet. 2007;369:123–31.

    Article  CAS  PubMed  Google Scholar 

  47. Hinze L, Moricke A, Zimmermann M, et al. Prognostic impact of IKZF1 deletions in association with vincristine-dexamethasone pulses during maintenance treatment of childhood acute lymphoblastic leukemia on trial ALL-BFM 95. Leukemia. 2017;31:1840–2.

    Article  CAS  PubMed  Google Scholar 

  48. Clappier E, Grardel N, Bakkus M, et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children’s Leukemia group study 58951. Leukemia. 2015;29:2154–61.

    Article  CAS  PubMed  Google Scholar 

  49. Aur RJ, Simone JV, Hustu HO, Verzosa MS. A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer. 1972;29:381–91.

    Article  CAS  PubMed  Google Scholar 

  50. Yeh TC, Liang DC, Hou JY, et al. Treatment of childhood acute lymphoblastic leukemia with delayed first intrathecal therapy and omission of prophylactic cranial irradiation: results of the TPOG-ALL-2002 study. Cancer. 2018;124:4538–47.

    Article  PubMed  Google Scholar 

  51. Burke MJ, Salzer WL, Devidas M, et al. Replacing cyclophosphamide/cytarabine/mercaptopurine with cyclophosphamide/etoposide during consolidation/delayed intensification does not improve outcome for pediatric B-cell acute lymphoblastic leukemia: a report from the COG. Haematologica. 2019;104:986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16:57–66.

    Article  CAS  PubMed  Google Scholar 

  53. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, M. (2020). B-Cell Precursor ALL. In: Kato, M. (eds) Pediatric Acute Lymphoblastic Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0548-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0548-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0547-8

  • Online ISBN: 978-981-15-0548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics