Skip to main content

Abstract

Individuals are exposed to a wide range of environmental factors of different nature, social, physical, and chemical over their lifetime. The cumulative effect of these environmental stressors, their interaction with genetic factors and key susceptible developmental stages determines disease risks. The concept of the “exposome”—representing all non-genetic exposures experienced during the life course—was a call to complement the impressive advances made in measuring the human genome with similar technology investment in measuring the environmental component of disease aetiology (Wild, Cancer Epidemiol Biomark Prev 14:1847–1850, 2005). While measuring the exposome is recognized to be extremely challenging due to its dynamic, heterogeneous, and still unknown nature, advances in new and emerging technologies were seen as opportunities to characterize internal and external domains of the exposome in a more holistic way. More than a decade after the exposome concept was first proposed, several projects across Europe and the USA have started implementing at least part of it. This chapter will describe the utility of the exposome concept, its characteristics, how it can be feasibly measured, and its first implementation in health studies, focusing on the early-life periods. Finally, the challenges and future perspectives of exposome research will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50. https://doi.org/10.1158/1055-9965.EPI-05-0456.

    Article  CAS  Google Scholar 

  2. Barton H, Grant M. A health map for the local human habitat. J R Soc Promot Heal. 2006;126:252–3.

    Article  Google Scholar 

  3. Blane D, Kelly-Irving M, D’Errico A, Bartley M, Montgomery S. Social-biological transitions: how does the social become biological? Longitud Life Course Stud Int J. 2013;3:136–46. https://doi.org/10.14301/llcs.v4i2.236.

    Article  Google Scholar 

  4. Kuh D, New Dynamics of Ageing (NDA) Preparatory Network. A life course approach to healthy aging, frailty, and capability. J Gerontol A Biol Sci Med Sci. 2007;62:717–21.

    Article  PubMed  Google Scholar 

  5. Blake-Lamb TL, Locks LM, Perkins ME, Woo Baidal JA, Cheng ER, Taveras EM. Interventions for childhood obesity in the first 1,000 days a systematic review. Am J Prev Med. 2016;50:780–9. https://doi.org/10.1016/j.amepre.2015.11.010.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? Biofilms Microbiomes. 2016;2:16003. https://doi.org/10.1038/npjbiofilms.2016.3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hsueh Y-M, Chen W-J, Lee C-Y, Chien S-N, Shiue H-S, Huang S-R, Lin M-I, Mu S-C, Hsieh R-L. Association of arsenic methylation capacity with developmental delays and health status in children: a prospective case–control trial. Sci Rep. 2016;6:37287. https://doi.org/10.1038/srep37287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41:24–32. https://doi.org/10.1093/ije/dyr236.

    Article  PubMed  Google Scholar 

  9. Yu B, Zanetti KA, Temprosa M, Albanes D, Appel N, Barrera CB, Ben-Shlomo Y, Boerwinkle E, Casas JP, Clish C, Dale C, Dehghan A, Derkach A, Eliassen AH, Elliott P, Fahy E, Gieger C, Gunter MJ, Harada S, Harris T, Herr DR, Herrington D, Hirschhorn JN, Hoover E, Hsing AW, Johansson M, Kelly RS, Khoo CM, Kivimäki M, Kristal BS, Langenberg C, Lasky-Su J, Lawlor DA, Lotta LA, Mangino M, Le Marchand L, Mathé E, Matthews CE, Menni C, Mucci LA, Murphy R, Oresic M, Orwoll E, Ose J, Pereira AC, Playdon MC, Poston L, Price J, Qi Q, Rexrode K, Risch A, Sampson J, Seow WJ, Sesso HD, Shah SH, Shu X-O, Smith GCS, Sovio U, Stevens VL, Stolzenberg-Solomon R, Takebayashi T, Tillin T, Travis R, Tzoulaki I, Ulrich CM, Vasan RS, Verma M, Wang Y, Wareham NJ, Wong A, Younes N, Zhao H, Zheng W, Moore SC. The Consortium of Metabolomics Studies (COMETS): metabolomics in 47 prospective cohort studies. Am J Epidemiol. 2019;188:991–1012. https://doi.org/10.1093/aje/kwz028.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, Arshad H, Baïz N, Bakermans-Kranenburg MJ, Bakulski KM, Binder EB, Bouchard L, Breton CV, Brunekreef B, Brunst KJ, Burchard EG, Bustamante M, Chatzi L, Cheng Munthe-Kaas M, Corpeleijn E, Czamara D, Dabelea D, Davey Smith G, De Boever P, Duijts L, Dwyer T, Eng C, Eskenazi B, Everson TM, Falahi F, Fallin MD, Farchi S, Fernandez MF, Gao L, Gaunt TR, Ghantous A, Gillman MW, Gonseth S, Grote V, Gruzieva O, Håberg SE, Herceg Z, Hivert M-F, Holland N, Holloway JW, Hoyo C, Hu D, Huang R-C, Huen K, Järvelin M-R, Jima DD, Just AC, Karagas MR, Karlsson R, Karmaus W, Kechris KJ, Kere J, Kogevinas M, Koletzko B, Koppelman GH, Küpers LK, Ladd-Acosta C, Lahti J, Lambrechts N, Langie SA, Lie RT, Liu AH, Magnus MC, Magnus P, Maguire RL, Marsit CJ, McArdle W, Melén E, Melton P, Murphy SK, Nawrot TS, Nisticò L, Nohr EA, Nordlund B, Nystad W, Oh SS, Oken E, Page CM, Perron P, Pershagen G, Pizzi C, Plusquin M, Raikkonen K, Reese SE, Reischl E, Richiardi L, Ring S, Roy RP, Rzehak P, Schoeters G, Schwartz DA, Sebert S, Snieder H, Sørensen TI, Starling AP, Sunyer J, Taylor JA, Tiemeier H, Ullemar V, Vafeiadi M, Van Ijzendoorn MH, Vonk JM, Vriens A, Vrijheid M, Wang P, Wiemels JL, Wilcox AJ, Wright RJ, Xu C-J, Xu Z, Yang IV, Yousefi P, Zhang H, Zhang W, Zhao S, Agha G, Relton CL, Jaddoe VW, London SJ. Cohort profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol. 2018;47:22–3. https://doi.org/10.1093/ije/dyx190.

    Article  PubMed  Google Scholar 

  11. Schindler BK, Esteban M, Koch HM, Castano A, Koslitz S, Cañas A, Casteleyn L, Kolossa-Gehring M, Schwedler G, Schoeters G, Den HE, Sepai O, Exley K, Bloemen L, Horvat M, Knudsen LE, Joas A, Joas R, Biot P, Aerts D, Lopez A, Huetos O, Katsonouri A, Maurer-Chronakis K, Kasparova L, Vrbík K, Rudnai P, Naray M, Guignard C, Fischer ME, Ligocka D, Janasik B, Reis MF, Namorado S, Pop C, Dumitrascu I, Halzlova K, Fabianova E, Mazej D, Tratnik JS, Berglund M, Jönsson B, Lehmann A, Crettaz P, Frederiksen H, Nielsen F, McGrath H, Nesbitt I, De Cremer K, Vanermen G, Koppen G, Wilhelm M, Becker K, Angerer J. The European COPHES/DEMOCOPHES project: towards transnational comparability and reliability of human biomonitoring results. Int J Hyg Environ Health. 2014;217:653–61. https://doi.org/10.1016/j.ijheh.2013.12.002.

    Article  PubMed  Google Scholar 

  12. Haug LS, Sakhi AK, Cequier E, Casas M, Maitre L, Basagana X, Andrusaityte S, Chalkiadaki G, Chatzi L, Coen M, de Bont J, Dedele A, Ferrand J, Grazuleviciene R, Gonzalez JR, Gutzkow KB, Keun H, McEachan R, Meltzer HM, Petraviciene I, Robinson O, Saulnier P-J, Slama R, Sunyer J, Urquiza J, Vafeiadi M, Wright J, Vrijheid M, Thomsen C. In-utero and childhood chemical exposome in six European mother-child cohorts. Environ Int. 2018;121:751–63. https://doi.org/10.1016/J.ENVINT.2018.09.056.

    Article  CAS  PubMed  Google Scholar 

  13. Dennis KK, Marder E, Balshaw DM, Cui Y, Lynes MA, Patti GJ, Rappaport SM, Shaughnessy DT, Vrijheid M, Barr DB. Biomonitoring in the era of the exposome. Environ Health Perspect. 2017;125:502–10. https://doi.org/10.1289/EHP474.

    Article  CAS  PubMed  Google Scholar 

  14. Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. The blood exposome and its role in discovering causes of disease. Environ Health Perspect. 2014;122:769–74. https://doi.org/10.1289/ehp.1308015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones DP. Sequencing the exposome: a call to action. Toxicol Rep. 2016;3:29–45. https://doi.org/10.1016/J.TOXREP.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  16. Warth B, Spangler S, Fang M, Johnson CH, Forsberg EM, Granados A, Martin RL, Domingo-Almenara X, Huan T, Rinehart D, Montenegro-Burke JR, Hilmers B, Aisporna A, Hoang LT, Uritboonthai W, Benton HP, Richardson SD, Williams AJ, Siuzdak G. Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal Chem. 2017;89:11505–13. https://doi.org/10.1021/acs.analchem.7b02759.

    Article  CAS  PubMed  Google Scholar 

  17. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc Natl Acad Sci U S A. 2015;112:12580–5. https://doi.org/10.1073/pnas.1509788112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang C, Wang X, Li X, Inlora J, Wang T, Liu Q, Snyder M. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell. 2018;175:277–91. https://doi.org/10.1016/j.cell.2018.08.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. Genomic variation landscape of the human gut microbiome. Nature. 2012;493:45–50. https://doi.org/10.1038/nature11711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCall L-I, Anderson VM, Fogle RS, Haffner JJ, Hossain E, Liu R, Ly AH, Ma H, Nadeem M, Yao S. Characterization of the workplace chemical exposome using untargeted LC-MS/MS: a case study. bioRxiv: 541813. 2019. https://doi.org/10.1101/541813.

  21. de Bont J, Casas M, Barrera-Gómez J, Cirach M, Rivas I, Valvi D, Álvarez M, Dadvand P, Sunyer J, Vrijheid M. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ Int. 2019;125:58–64. https://doi.org/10.1016/j.envint.2019.01.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forns J, Dadvand P, Esnaola M, Alvarez-Pedrerol M, López-Vicente M, Garcia-Esteban R, Cirach M, Basagaña X, Guxens M, Sunyer J. Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. Environ Res. 2017;159:416–21. https://doi.org/10.1016/j.envres.2017.08.031.

    Article  CAS  PubMed  Google Scholar 

  23. Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31. https://doi.org/10.1016/j.envint.2016.11.012.

    Article  CAS  PubMed  Google Scholar 

  24. McEachan RRC, Yang TC, Roberts H, Pickett KE, Arseneau-Powell D, Gidlow CJ, Wright J, Nieuwenhuijsen M. Availability, use of, and satisfaction with green space, and children’s mental wellbeing at age 4 years in a multicultural, deprived, urban area: results from the Born in Bradford Cohort Study. Lancet Planet Health. 2018;2:e244–54. https://doi.org/10.1016/S2542-5196(18)30119-0.

    Article  PubMed  Google Scholar 

  25. Stansfeld S, Clark C. Health effects of noise exposure in children. Curr Environ Health Rep. 2015;2:171–8. https://doi.org/10.1007/s40572-015-0044-1.

    Article  PubMed  Google Scholar 

  26. Kmietowicz Z. Air pollution: ban schools and other children’s facilities from hotspots, say campaigners. BMJ. 2018;363:k4489. https://doi.org/10.1136/bmj.k4489.

    Article  PubMed  Google Scholar 

  27. UK Government. National Travel Survey Collection. Statistics and data about the National Travel Survey, based on a household survey to monitor trends in personal travel. 2018.

    Google Scholar 

  28. Robinson O, Tamayo I, de Castro M, Valentin A, Giorgis-Allemand L, Hjertager Krog N, Marit Aasvang G, Ambros A, Ballester F, Bird P, Chatzi L, Cirach M, Dėdelė A, Donaire-Gonzalez D, Gražuleviciene R, Iakovidis M, Ibarluzea J, Kampouri M, Lepeule J, Maitre L, McEachan R, Oftedal B, Siroux V, Slama R, Stephanou EG, Sunyer J, Urquiza J, Vegard Weyde K, Wright J, Vrijheid M, Nieuwenhuijsen M, Basagaña X. The urban exposome during pregnancy and its socioeconomic determinants. Environ Health Perspect. 2018;126:077005. https://doi.org/10.1289/EHP2862.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Senier L, Brown P, Shostak S, Hanna B. The socio-exposome: advancing exposure science and environmental justice in a post-genomic era. Environ Sociol. 2016;3(2):107–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Juarez PD. Sequencing the public health exposome: a proposed taxonomy for standardizing environmental exposures of the natural, built, social and policy environments. In: Macherone SDA, editor. Unraveling the exposome: a practical review. Cham: Springer; 2018. p. 23–61.

    Google Scholar 

  31. Casas M, Basagaña X, Sakhi AK, Haug LS, Philippat C, Granum B, Manzano-Salgado CB, Brochot C, Zeman F, de Bont J, Andrusaityte S, Chatzi L, Donaire-Gonzalez D, Giorgis-Allemand L, Gonzalez JR, Gracia-Lavedan E, Grazuleviciene R, Kampouri M, Lyon-Caen S, Pañella P, Petraviciene I, Robinson O, Urquiza J, Vafeiadi M, Vernet C, Waiblinger D, Wright J, Thomsen C, Slama R, Vrijheid M. Variability of urinary concentrations of non-persistent chemicals in pregnant women and school-aged children. Environ Int. 2018;121:561–73. https://doi.org/10.1016/j.envint.2018.09.046.

    Article  CAS  PubMed  Google Scholar 

  32. Tamayo-Uria I, Maitre L, Thomsen C, Nieuwenhuijsen MJ, Chatzi L, Siroux V, Aasvang GM, Agier L, Andrusaityte S, Casas M, de Castro M, Dedele A, Haug LS, Heude B, Grazuleviciene R, Gutzkow KB, Krog NH, Mason D, McEachan RRC, Meltzer HM, Petraviciene I, Robinson O, Roumeliotaki T, Sakhi AK, Urquiza J, Vafeiadi M, Waiblinger D, Warembourg C, Wright J, Slama R, Vrijheid M, Basagaña X. The early-life exposome: description and patterns in six European countries. Environ Int. 2019;123:189–200. https://doi.org/10.1016/j.envint.2018.11.067.

    Article  CAS  PubMed  Google Scholar 

  33. Patel CJ, Ioannidis JPA, Cullen MR, Rehkopf DH. Systematic assessment of the correlations of household income with infectious, biochemical, physiological, and environmental factors in the United States, 1999–2006. Am J Epidemiol. 2015;181:171–9. https://doi.org/10.1093/aje/kwu277.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robinson O, Vrijheid M. The pregnancy exposome. Curr Environ Health Rep. 2015;2:204–13. https://doi.org/10.1007/s40572-015-0043-2.

    Article  CAS  PubMed  Google Scholar 

  35. Ioannidis JPA. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med. 2016;35:1749–62. https://doi.org/10.1002/sim.6825.

    Article  PubMed  Google Scholar 

  36. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel CJ, Ioannidis JPA. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68:1096–100. https://doi.org/10.1136/jech-2014-204195.

    Article  PubMed  Google Scholar 

  38. Chung MK, Kannan K, Louis GM, Patel CJ. Toward capturing the exposome: exposure biomarker variability and coexposure patterns in the shared environment. Environ Sci Technol. 2018;52:8801–10. https://doi.org/10.1021/acs.est.8b01467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maitre L, Robinson O, Martinez D, Toledano MB, Ibarluzea J, Marina LS, Sunyer J, Villanueva CM, Keun HC, Vrijheid M, Coen M. Urine metabolic signatures of multiple environmental pollutants in pregnant women: an exposome approach. Environ Sci Technol. 2018;52:13469–80. https://doi.org/10.1021/acs.est.8b02215.

    Article  CAS  PubMed  Google Scholar 

  40. Patel CJ, Manrai AK. Development of exposome correlation globes to map out environment-wide associations. Pac Symp Biocomput. 2015;20:231–42.

    PubMed Central  Google Scholar 

  41. Perrier F, Giorgis-Allemand L, Slama R, Philippat C. Within-subject pooling of biological samples to reduce exposure misclassification in biomarker-based studies. Epidemiology. 2016;27:378–88. https://doi.org/10.1097/EDE.0000000000000460.

    Article  PubMed  PubMed Central  Google Scholar 

  42. World Health Organization (WHO). Principles of characterizing and applying human exposure models. Geneva: WHO; 2013.

    Google Scholar 

  43. Dadvand P, de Nazelle A, Triguero-Mas M, Schembari A, Cirach M, Amoly E, Figueras F, Basagaña X, Ostro B, Nieuwenhuijsen M. Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environ Health Perspect. 2012;120:1286–90. https://doi.org/10.1289/ehp.1104609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Donaire-Gonzalez D, Curto A, Valentín A, Andrusaityte S, Basagaña X, Casas M, Chatzi L, de Bont J, de Castro M, Dedele A, Granum B, Grazuleviciene R, Kampouri M, Lyon-Caen S, Manzano-Salgado CB, Aasvang GM, McEachan R, Meinhard-Kjellstad CH, Michalaki E, Pañella P, Petraviciene I, Schwarze PE, Slama R, Robinson O, Tamayo-Uria I, Vafeiadi M, Waiblinger D, Wright J, Vrijheid M, Nieuwenhuijsen MJ. Personal assessment of the external exposome during pregnancy and childhood in Europe. Environ Res. 2019;74:95–104. https://doi.org/10.1016/J.ENVRES.2019.04.015.

    Article  Google Scholar 

  45. Patel CJ, Bhattacharya J, Butte AJ. An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS One. 2010;5:e10746. https://doi.org/10.1371/journal.pone.0010746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tzoulaki I, Patel CJ, Okamura T, Chan Q, Brown IJ, Miura K, Ueshima H, Zhao L, Van Horn L, Daviglus ML, Stamler J, Butte AJ, Ioannidis JPA, Elliott P. A nutrient-wide association study on blood pressure. Circulation. 2012;126:2456–64. https://doi.org/10.1161/CIRCULATIONAHA.112.114058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel CJ, Rehkopf DH, Leppert JT, Bortz WM, Cullen MR, Chertow GM, Ioannidis JP. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey. Int J Epidemiol. 2013;42:1795–810. https://doi.org/10.1093/ije/dyt208.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patel CJ, Yang T, Hu Z, Wen Q, Sung J, El-Sayed YY, Cohen H, Gould J, Stevenson DK, Shaw GM, Ling XB, Butte AJ. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reprod Toxicol. 2014;45:1–7. https://doi.org/10.1016/j.reprotox.2013.12.005.

    Article  CAS  PubMed  Google Scholar 

  49. Lind PM, Risérus U, Salihovic S, van BB, Lind L. An environmental wide association study (EWAS) approach to the metabolic syndrome. Environ Int. 2013;55:1–8. https://doi.org/10.1016/j.envint.2013.01.017.

    Article  PubMed  Google Scholar 

  50. Patel CJ, Manrai AK, Corona E, Kohane IS. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length. Int J Epidemiol. 2016;46:dyw043. https://doi.org/10.1093/ije/dyw043.

    Article  Google Scholar 

  51. Maitre L, de Bont J, Casas M, Robinson O, Aasvang GM, Agier L, Andrušaitytė S, Ballester F, Basagaña X, Borràs E, Brochot C, Bustamante M, Carracedo A, de Castro M, Dedele A, Donaire-Gonzalez D, Estivill X, Evandt J, Fossati S, Giorgis-Allemand L, Gonzalez RJ, Granum B, Grazuleviciene R, Bjerve Gützkow K, Småstuen Haug L, Hernandez-Ferrer C, Heude B, Ibarluzea J, Julvez J, Karachaliou M, Keun HC, Hjertager Krog N, Lau C-HE, Leventakou V, Lyon-Caen S, Manzano C, Mason D, McEachan R, Meltzer HM, Petraviciene I, Quentin J, Roumeliotaki T, Sabido E, Saulnier P-J, Siskos AP, Siroux V, Sunyer J, Tamayo I, Urquiza J, Vafeiadi M, van Gent D, Vives-Usano M, Waiblinger D, Warembourg C, Chatzi L, Coen M, van den Hazel P, Nieuwenhuijsen MJ, Slama R, Thomsen C, Wright J, Vrijheid M. Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open. 2018;8:e021311. https://doi.org/10.1136/bmjopen-2017-021311.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dadvand P, Ostro B, Figueras F, Foraster M, Basagaña X, Valentín A, Martinez D, Beelen R, Cirach M, Hoek G, Jerrett M, Brunekreef B, Nieuwenhuijsen MJ. Residential proximity to major roads and term low birth weight. Epidemiology. 2014;25:518–25. https://doi.org/10.1097/EDE.0000000000000107.

    Article  PubMed  Google Scholar 

  53. Lenters V, Portengen L, Rignell-Hydbom A, Jönsson BAG, Lindh CH, Piersma AH, Toft G, Bonde JP, Heederik D, Rylander L, Vermeulen R. Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect. 2015;124:365–72. https://doi.org/10.1289/ehp.1408933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lenters V, Portengen L, Smit LAM, Jönsson BAG, Giwercman A, Rylander L, Lindh CH, Spanò M, Pedersen HS, Ludwicki JK, Chumak L, Piersma AH, Toft G, Bonde JP, Heederik D, Vermeulen R. Phthalates, perfluoroalkyl acids, metals and organochlorines and reproductive function: a multipollutant assessment in Greenlandic, Polish and Ukrainian men. Occup Environ Med. 2015;72:385–93. https://doi.org/10.1136/oemed-2014-102264.

    Article  PubMed  Google Scholar 

  55. Nieuwenhuijsen MJ, Agier L, Basagaña X, Urquiza J, Tamayo-Uria I, Giorgis-Allemand L, Robinson O, Siroux V, Maitre L, de Castro M, Valentin A, Donaire-Gonzalez D, Dadvand P, Aasvang GM, Vrijheid M, Slama R. Influence of the urban exposome on birth weight. Environ Health Perspect. 2019;127(4):47007. https://doi.org/10.1289/EHP3971.

    Article  PubMed  Google Scholar 

  56. Agier L, Basagaña X, Maitre L, Granum B, Bird PK, Casas M, Oftedal B, Wright J, Andrusaityte S, de Castro M, Cequier E, Chatzi L, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, Sakhi AK, Leventakou V, McEachan R, Nieuwenhuijsen M, Petraviciene I, Robinson O, Roumeliotaki T, Sunyer J, Tamayo-Uria I, Thomsen C, Urquiza J, Valentin A, Slama R, Vrijheid M, Siroux V. Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planet Health. 2019;3:e81–92. https://doi.org/10.1016/S2542-5196(19)30010-5.

    Article  PubMed  Google Scholar 

  57. Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. A systematic comparison of linear regression–based statistical methods to assess exposome-health associations. Environ Health Perspect. 2016;124(12):1848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lenters V. Assessing our multi-pollutant burden: environmental chemical exposures and reproductive and child health. Utrecht: Utrecht University; 2017.

    Google Scholar 

  59. Vernet C, Philippat C, Calafat AM, Ye X, Lyon-Caen S, Siroux V, Schisterman EF, Slama R. Within-day, between-day, and between-week variability of urinary concentrations of phenol biomarkers in pregnant women. Environ Health Perspect. 2018;126:037005. https://doi.org/10.1289/EHP1994.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Jain P, Vineis P, Liquet B, Vlaanderen J, Bodinier B, van Veldhoven K, Kogevinas M, Athersuch TJ, Font-Ribera L, Villanueva CM, Vermeulen R, Chadeau-Hyam M. A multivariate approach to investigate the combined biological effects of multiple exposures. J Epidemiol Community Health. 2018;72:564–71. https://doi.org/10.1136/jech-2017-210061.

    Article  PubMed  Google Scholar 

  61. Barrera-Gómez J, Agier L, Portengen L, Chadeau-Hyam M, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen M, Vineis P, Vrijheid M, Vermeulen R, Slama R, Basagaña X. A systematic comparison of statistical methods to detect interactions in exposome-health associations. Environ Health. 2017;16:74. https://doi.org/10.1186/s12940-017-0277-6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bobb JF, Valeri L, Claus Henn B, Christiani DC, Wright RO, Mazumdar M, Godleski JJ, Coull BA. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics. 2015;16:493–508. https://doi.org/10.1093/biostatistics/kxu058.

    Article  PubMed  Google Scholar 

  63. Molitor J, Papathomas M, Jerrett M, Richardson S. Bayesian profile regression with an application to the National Survey of Children’s Health. Biostatistics. 2010;11:484–98. https://doi.org/10.1093/biostatistics/kxq013.

    Article  PubMed  Google Scholar 

  64. Stafoggia M, Breitner S, Hampel R, Basagaña X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: the state of the science. Curr Environ Health Rep. 2017;4:481–90. https://doi.org/10.1007/s40572-017-0162-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léa Maitre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maitre, L., Vrijheid, M. (2020). Exposomics: The Exposome in Early Life. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics